Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlled patterning of aligned self-assembled peptide nanotubes

Abstract

Controlling the spatial organization of objects at the nanoscale is a key challenge in enabling their technological application1,2,3. Biomolecular assemblies are attractive nanostructures owing to their biocompatibility, straightforward chemical modifiability, inherent molecular recognition properties and their availability for bottom-up fabrication4,5,6,7,8,9,10,11,12,13,14,15,16. Aromatic peptide nanotubes are self-assembled nanostructures with unique physical and chemical stability and remarkable mechanical rigidity14,15,16. Their application in the fabrication of metallic nanowires and in the improvement of the sensitivity of electrochemical biosensors have already been demonstrated14,15,16,17. Here we show the formation of a vertically aligned nanoforest by axial unidirectional growth of a dense array of these peptide tubes. We also achieved horizontal alignment of the tubes through noncovalent coating of the tubes with a ferrofluid and the application of an external magnetic field. Taken together, our results demonstrate the ability to form a two-dimensional dense array of nanotube assemblies with either vertical or horizontal patterns.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Vertically aligned diphenylalanine-based nanotubes self-assembled into a peptide nanoforest.
Figure 2: Cold field-emission gun high-resolution scanning electron microscope (CFEG-HRSEM) analysis with various tilting angles of the diphenylalanine-based peptide nanotubes array assembled on a siliconized glass.
Figure 3: A positively charged diphenylalanine peptide analogue can self-assemble on siliconized glass in the same manner as the diphenylalanine peptide.
Figure 4: The self-assembly of the diphenylalanine-based peptide nanotubes in the presence of a ferrofluid and their exposure to an external magnetic field resulted in control over their horizontal alignment.

References

  1. 1

    Zhong, Z. H., Wang, D. L., Cui, Y., Bockrath, M. W. & Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377–1379 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Modi, A., Koratkar, N., Lass, E., Wei, B. Q. & Ajayan, P. M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Patolsky, F. et al. Electrical detection of single viruses. Proc. Natl Acad. Sci. USA 101, 14017–14022 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    CAS  Article  Google Scholar 

  5. 5

    Sarikaya, M., Tamerler, C., Jen, A. K., Schulten, K. & Baneyx, F. Molecular biomimetics: Nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Hazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture Nature 366, 324–327 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Banerjee, I. A., Yu, L. & Matsui, H. Cu nanocrystal growth on peptide nanotubes by biomineralization: size control of Cu nanocrystals by tuning peptide conformation. Proc. Natl Acad. Sci. USA 100, 14678–14682 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Hartgerink, J. D., Beniash, E. & Stupp. S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Aggeli, A. et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386, 259–262 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Mao, C. et al. Viral assembly of oriented quantum dot nanowires. Science 303, 213–217 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Vauthey, S., Santoso, S., Gong, H. Y., Watson, N. & Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl Acad. Sci. USA 99, 5355–5360 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Zhao, X. & Zhang, S. Fabrication of molecular materials using peptide construction motifs. Trends Biotechnol. 22, 470–476 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Hamada, D., Yanagihara, I. & Tsumoto, K. Engineering amyloidogenicity towards the development of nanofibrillar materials. Trends Biotechnol. 22, 93–97 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Adler-Abramovich, L. et al. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir 22, 1313–1320 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Kol, N. et al. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5, 1343–1346 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Yemini, M., Reches, M., Rishpon, J. & Gazit, E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 5, 183–186 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Li, W. Z. et al. Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Terrones, M. et al. Controlled production of aligned-nanotube bundles. Nature 388, 52–55 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Ren, Z. F. et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Melosh, N. A. et al. Ultrahigh-density nanowire lattices and circuits. Science 300, 112–115 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Wang, Z. L & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Song, Y. J. et al. Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem. Commun. 1044–1045 (2004).

  26. 26

    Gorbitz, C. H. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 7, 5153–5159 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Gorbitz, C. H. The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's beta-amyloid polypeptide. Chem. Commun. 2332–2334 (2006).

  28. 28

    Asherie, N. Protein crystallization and phase diagrams. Methods 34, 266–272.

  29. 29

    Reches, M. & Gazit, E. Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues. Israel J. Chem. 45, 363–371 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Banerjee, I. A. et al. Magnetic nanotube fabrication by using bacterial magnetic nanocrystals. Adv. Mater. 17, 1128–1131 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Israel Science Foundation (the F.I.R.S.T program). We thank members of the Gazit Laboratory for helpful discussions. M.R. gratefully acknowledges the support of the Clore Foundation Scholars Programme and the Dan David Scholarship Award. The authors would like to thank E. Wachtel for the XRD analysis, S. Wolf for the electron diffraction analysis, and M. Pauzner for graphical assistance.

Author information

Affiliations

Authors

Contributions

M.R and E.G designed the experimental setup, analysed the data and co-wrote this manuscript. M.R performed the experiments.

Corresponding author

Correspondence to Ehud Gazit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reches, M., Gazit, E. Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotech 1, 195–200 (2006). https://doi.org/10.1038/nnano.2006.139

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research