Abstract
Research into nanostructured materials frequently relates to pure substances. This contrasts with industrial applications, where chemical doping or alloying is often used to enhance the electrical or mechanical properties of materials1. However, the controlled preparation of doped nanomaterials has been much more difficult than expected because the increased surface-area-to-volume ratio can, for instance, lead to the expulsion of impurities (self-purification)2. For nanostructured alloys, the influence of growth methods and the atomic structure on self-purification is still open to investigation2,3. Here, we explore, experimentally and with molecular dynamics simulations, to what extent alloying persists in the limit that a binary metal is mechanically stretched to a linear chain of atoms. Our results reveal a gradual evolution of the arrangement of the different atomic elements in the narrowest region of the chain, where impurities may be expelled to the surface or enclosed during elongation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Symmetry-driven half-integer conductance quantization in Cobalt–fulvalene sandwich nanowire
npj Computational Materials Open Access 21 October 2023
-
Magnetic control over the fundamental structure of atomic wires
Nature Communications Open Access 15 July 2022
-
Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture
npj Computational Materials Open Access 09 May 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Callister, W. D. Jr. Materials Science and Engineering, an Introduction 5th edn (John Wiley & Sons, New York, 1999).
Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005).
Agraït, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377 (2–3), 81–279 (2003).
Jarvis, S. P., Lantz, M. A., Ogiso, H., Tokumoto, H. & Dürig, U. Conduction and mechanical properties of atomic scale gold contacts Appl. Phys. Lett. 75, 3132–3134 (1999).
Rodrigues, V., Fuhrer, T. & Ugarte, D. Signature of atomic structure in the quantum conductance of gold nanowire. Phys. Rev. Lett. 85, 4124–4127 (2000).
Tosatti, E. Nanowire formation at metal–metal contacts. Sol. St. Commun. 135 (9–10), 610–617 (2005).
Enomoto, D. A., Kurokawa, S. & Sakai, A. Quantized conductance in Au–Pd and Au–Ag alloy nanocontacts. Phys. Rev. B 65, 125410 (2002).
Bakker, D. J., Noat, Y., Yanson, A. I. & van Ruitenbeek, J. M. Effect of disorder on the conductance of a Cu atomic point contact. Phys. Rev. B 65, 235416 (2002).
Heesemskerk, J. W. T. et al. Current-induced transition in atomic-sized contacts of metallic alloys. Phys. Rev. B 67, 115416 (2003).
Geng, W. T. & Kim, K. S. Linear monatomic wires stabilized by alloying: Ab initio density functional calculations. Phys. Rev. B 67, 233403 (2003).
Fujii, A., Ochi, R., Kurokawa, S. & Sakai, A. Alloying effects on the 1G(0) contact of Au. Appl. Surf. Sci. 228, 207–212 (2004).
Asaduzzaman, A. M. & Springborg, M. Structural and electronic properties of Au, Pt, and their bimetallic nanowires. Phys. Rev. B 72, 165422 (2005).
Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998).
Yanson, A. I., Bollinger, G. R., van den Brom, H. E., Agraït, N. & van Ruitenbeek, J. M. Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998).
Rodrigues, V., Bettini, J. & Ugarte, D. Evidence for spontaneous spin-polarized transport in magnetic nanowires. Phys. Rev. Lett. 91, 096801 (2003).
Delin, A., Tosatti, E. & Weht, R. Magnetism in atomic-size palladium contacts and nanowires. Phys. Rev. Lett. 92, 057201 (2004).
Delin, A. & Tosatti, E. Magnetic phenomena in 5d transition metal nanowires. Phys. Rev. B 68, 144434 (2003).
Thijssen, W. H. A., Marjenburgh, D., Bremmer, R. H. & van Ruitenbeek, J. M. Oxygen-enhanced atomic chain formation. Phys. Rev. Lett. 96, 026806 (2006).
Kondo, Y. & Takayanagi, K. Synthesis and characterization of helical multi-shell gold nanowires. Science 289, 606–608 (2000).
Rodrigues, V., Bettini, J., Rocha, A. R., Rego, L. G. C. & Ugarte, D. Quantum conductance in silver nanowires: Correlation between atomic structure and transport properties. Phys. Rev. B 65, 153402 (2002).
Bettini, J., Rodrigues, V., González, J. C. & Ugarte, D. Real-time atomic resolution study of metal nanowires. Appl. Phys. A 81, 1513–1518 (2005).
Smit, R. H. M., Untiedt, C., Yanson, A. I. & van Ruitenbeek, J. M. Common origin for surface reconstruction and the formation of chains of metal atoms. Phys. Rev. Lett. 87, 266102 (2001).
Kondo, Y. & Takayanagi, K. Gold nanobridge stabilized by surface structure. Phys. Rev. Lett. 87, 266102 (2001).
Williams, D. B. & Carter, C. B. Transmission Electron Microscopy (Plenum, New York, 1996).
Stadelmann, P. EMS — a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131 (1987).
Cleri, F. & Rosato, V. Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22–33 (1993).
Tománek, D., Aligia, A. A. & Balseiro, C. A. Calculation of elastic strain and electronic effects on surface segregation. Phys. Rev. B 32, 5051–5056 (1985).
Coura, P. Z. et al. On the structural and stability features of linear atomic suspended chains formed from gold nanowires stretching. Nano Lett. 4, 1187–1191 (2004).
Sato, F. et al. Computer simulations of gold nanowire formation: the role of outlayer atoms. Appl. Phys. A 81, 1527 (2005).
Acknowledgements
This work was supported by LNLS, CNPq, FAPESP, FAPEMIG, IMMP/MCT, IN/MCT and CAPES. The authors acknowledge the invaluable help of the LNLS staff, in particular P. C. Silva for sample preparation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Movie 1 (MOV 1772 kb)
Supplementary Information
Movie 2 (MOV 2325 kb)
Supplementary Information
Movie 3 (MPG 2149 kb)
Rights and permissions
About this article
Cite this article
Bettini, J., Sato, F., Coura, P. et al. Experimental realization of suspended atomic chains composed of different atomic species. Nature Nanotech 1, 182–185 (2006). https://doi.org/10.1038/nnano.2006.132
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2006.132
This article is cited by
-
Symmetry-driven half-integer conductance quantization in Cobalt–fulvalene sandwich nanowire
npj Computational Materials (2023)
-
Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture
npj Computational Materials (2022)
-
Magnetic control over the fundamental structure of atomic wires
Nature Communications (2022)
-
Determinants of interchain coupling properties of Te atomic chains
Scientific Reports (2022)
-
Structure, stability and electronic properties of bimetallic atomic chains of Au–Ag and Au–Pt
Pramana (2019)