Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlled buckling of semiconductor nanoribbons for stretchable electronics

Abstract

Control over the composition, shape, spatial location and/or geometrical configuration of semiconductor nanostructures is important for nearly all applications of these materials. Here we report a mechanical strategy for creating certain classes of three-dimensional shapes in nanoribbons that would be difficult to generate in other ways. This approach involves the combined use of lithographically patterned surface chemistry to provide spatial control over adhesion sites, and elastic deformations of a supporting substrate to induce well-controlled local displacements. We show that precisely engineered buckling geometries can be created in nanoribbons of GaAs and Si in this manner and that these configurations can be described quantitatively with analytical models of the mechanics. As one application example, we show that some of these structures provide a route to electronics (and optoelectronics) with extremely high levels of stretchability (up to 100%), compressibility (up to 25%) and bendability (with curvature radius down to 5 mm).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Processing steps for engineering 3D buckled shapes in semiconductor nanoribbons.
Figure 2: Optical and SEM micrographs of the side-view profiles of buckled GaAs and Si ribbons.
Figure 3: Stretching and compressing of buckled GaAs ribbons embedded in PDMS.
Figure 4: Bending of buckled ribbons on surfaces and in matrixes of PDMS.
Figure 5: Characterization of stretchable metal–semiconductor–metal photodetectors (MSM PDs).

References

  1. Duan, X. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

    Article  CAS  Google Scholar 

  2. Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Article  CAS  Google Scholar 

  3. Wu, Y. et al. Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. Chem. Eur. J. 8, 1261–1268 (2002).

    Google Scholar 

  4. Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

    Article  CAS  Google Scholar 

  5. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  Google Scholar 

  6. Wang, D., Chang, Y.-L., Lu, Z. & Dai, H. Oxidation resistant germanium nanowires: bulk synthesis, long chain alkanethiol functionalization, and Langmuir–Blodgett assembly. J. Am. Chem. Soc. 127, 11871–11875 (2005).

    Article  CAS  Google Scholar 

  7. Huang, M. H. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001).

    Article  CAS  Google Scholar 

  8. Gudiksen, M. S., Wang, J. & Lieber, C. M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105, 4062–4064 (2001).

    Article  CAS  Google Scholar 

  9. Yu, H., Li, J., Loomis, R. A., Wang, L.-W. & Buhro, W. E. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nature Mater. 2, 517–520 (2003).

    Article  CAS  Google Scholar 

  10. Sun, Y. et al. Photolithographic route to the fabrication of micro/nanowires of III-V semiconductors. Adv. Funct. Mater. 15, 30–40 (2005).

    Article  CAS  Google Scholar 

  11. Yin, Y., Gates, B. & Xia, Y. A soft lithography approach to the fabrication of nanostructures of single crystalline silicon with well-defined dimensions and shapes. Adv. Mater. 12, 1426–1430 (2000).

    Article  CAS  Google Scholar 

  12. Kodambaka, S., Hannon, J. B., Tromp, R. M. & Ross, F. M. Control of Si nanowire growth by oxygen. Nano Lett. 6, 1292–1296 (2006).

    Article  CAS  Google Scholar 

  13. Shan, Y., Kalkan, A. K., Peng, C.-Y. & Fonash, S. J. From Si source gas directly to positioned, electrically contacted Si nanowires: the self-assembling “grow-in-place” approach. Nano Lett. 4, 2085–2089 (2004).

    Article  CAS  Google Scholar 

  14. He, R. et al. Si nanowire bridges in microtrenches: integration of growth into device fabrication. Adv. Mater. 17, 2098–2102 (2005).

    Article  CAS  Google Scholar 

  15. Lee, K. J. et al. Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates. Adv. Mater. 17, 2332–2336 (2005).

    Article  CAS  Google Scholar 

  16. Gao, P. X. et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005).

    Article  CAS  Google Scholar 

  17. Kong, X. Y., Ding, Y., Yang, R. & Wang, Z. L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303, 1348–1351 (2004).

    Article  CAS  Google Scholar 

  18. Chen, P., Chua, S. J., Wang, Y. D., Sander, M. D. & Fonstad, C. G. InGaN nanorings and nanodots by selective area epitaxy. Appl. Phys. Lett. 87, 143111 (2005).

    Article  Google Scholar 

  19. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382–385 (2003).

    Article  CAS  Google Scholar 

  20. Dick, K. A. et al. Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nature Mater. 3, 380–384 (2004).

    Article  CAS  Google Scholar 

  21. Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).

    Article  CAS  Google Scholar 

  22. Schmidt, O. G. & Eberl, K. Thin solid films roll up into nanotubes. Nature 410, 168–168 (2001).

    Article  CAS  Google Scholar 

  23. Zhang, L. et al. Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts. Nano Lett. 6, 1311–1317 (2006).

    Article  CAS  Google Scholar 

  24. Jin, H.-C., Abelson, J. R., Erhardt, M. K. & Nuzzo, R. G. Soft lithographic fabrication of an image sensor array on a curved substrate. J. Vac. Sci. Technol. B 22, 2548–2551 (2004).

    Article  CAS  Google Scholar 

  25. Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004).

    Article  CAS  Google Scholar 

  26. Nathan, A. et al. Amorphous silicon detector and thin film transistor technology for large-area imaging of X-rays. Microelectronics J. 31, 883–891 (2000).

    Article  Google Scholar 

  27. Lacour, S. P., Jones, J., Wagner, S., Li, T. & Suo, Z. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93, 1459–1467 (2005).

    Article  CAS  Google Scholar 

  28. Childs, W. R., Motala, M. J., Lee, K. J. & Nuzzo, R. G. Masterless soft lithography: patterning UV/Ozone-induced adhesion on poly (dimethylsiloxane) surfaces. Langmuir 21, 10096–10105 (2005).

    Article  CAS  Google Scholar 

  29. Duffy, D. C., McDonald, J. C., Schueller, O. J. A. & Whitesides, G. M. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  Google Scholar 

  30. Huang, Y. Y. et al. Stamp collapse in soft lithography. Langmuir 21, 8058–8068 (2005).

    Article  CAS  Google Scholar 

  31. Sun, Y. & Rogers, J. A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 4, 1953–1959 (2004).

    Article  CAS  Google Scholar 

  32. Sun, Y., Kumar, V., Adesida, I. & Rogers, J. A. Buckled and wavy ribbons of GaAs for high-performance electronics on elastomeric substrates. Adv. Mater. 18, 2857–2862 (2006).

    Article  CAS  Google Scholar 

  33. Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W. & Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998).

    Article  CAS  Google Scholar 

  34. Loo, Y.-L. et al. Soft, conformable electrical contacts for organic semiconductors: high-resolution plastic circuits by lamination. Proc. Natl Acad. Sci. U.S.A. 99, 10252–10256 (2002).

    Article  CAS  Google Scholar 

  35. Suo, Z., Ma, E. Y., Gleskova, H. & Wagner, S. Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 74, 1177–1179 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy under grant DEFG02-91-ER45439. The fabrication and measurements were carried out using the facilities located in the Microfabrication Laboratory of Frederick Seitz Materials Research Laboratory, which are supported by the Department of Energy. W.M. Choi would like to acknowledge the financial support from Korea Research Foundation grant KRF-2005-214-D00261, funded by the Korean Government (MOEHRD). Argonne National Laboratory's work (partially for Y. Sun) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC-02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and J.A.R. conceived and designed the experiments, Y.S. and W.M.C. performed the experiments, and H.J. and Y.Y.H. modelled the mechanical behaviour of the samples. Y.S. and J.A.R. co-wrote the paper.

Corresponding authors

Correspondence to Yugang Sun or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Choi, W., Jiang, H. et al. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nature Nanotech 1, 201–207 (2006). https://doi.org/10.1038/nnano.2006.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing