Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electron transport in molecular junctions

Abstract

Building an electronic device using individual molecules is one of the ultimate goals in nanotechnology. To achieve this it will be necessary to measure, control and understand electron transport through molecules attached to electrodes. Substantial progress has been made over the past decade and we present here an overview of some of the recent advances. Topics covered include molecular wires, two-terminal switches and diodes, three-terminal transistor-like devices and hybrid devices that use various different signals (light, magnetic fields, and chemical and mechanical signals) to control electron transport in molecules. We also discuss further issues, including molecule–electrode contacts, local heating- and current-induced instabilities, stochastic fluctuations and the development of characterization tools.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration of a single molecule attached to two electrodes as a basic component in molecular electronics.
Figure 2: Length dependence of conductance G for saturated chains (alkanes13 and peptides12) and conjugated molecules (carotenoids23).
Figure 3: a, A molecular diode consisting of a single molecule (1') covalently linked to two Au electrodes of a mechanically controlled break junction.
Figure 4: Demonstration of two-state molecular switching behaviour in three different platforms.
Figure 5: Controlling current through a molecule using different gates.
Figure 6: Controlling electron transport through a redox molecule, PTCDI, by switching the redox state of the molecule with an electrochemical gate.

References

  1. 1

    Cuniberti, G., Fagas, G. & Richter, K. Introducing Molecular Electronics. (Springer, Berlin and Heidelberg, 2005).

    Book  Google Scholar 

  2. 2

    Selzer, Y. & Allara, D. L. Single-Molecule Electrical Junctions. Ann. Rev. Phys. Chem. 57, 593–623 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Joachim, C. & Ratner, M. A. Molecular Electronics Special Feature: Molecular electronics: Some views on transport junctions and beyond. Proc. Natl Acad. Sci. USA 102, 8801–8808 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Weiss, E. A., Wasielewski, M. R. & Ratner, M. A. Molecules as wires: Molecule-assisted movement of charge and energy. Top. Curr. Chem. 257, 103–133 (2005).

    Article  Google Scholar 

  5. 5

    Slowinski, K., Chamberlain, R. V., Miller, C. J. & Majda, M. Through-bond and chain-to-chain coupling. Two pathways in electron tunneling through liquid alkanethiol monolayers on mercury electrodes. J. Am. Chem. Soc. 119, 11910–11919 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Wold, D. J. & Frisbie, C. D. Formation of metal-molecule-metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip. J. Am. Chem. Soc. 122, 2970–2971 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Wang, W., Lee, T. & Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68, 035416 (2003).

    Article  CAS  Google Scholar 

  8. 8

    Haiss, W. et al. Thermal gating of the single molecule conductance of alkanedithiols. Faraday Discuss. 131, 253–264 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Xu, B. Q. & Tao, N. J. Measurement of single molecule conductance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Cui, X. D. et al. Reproducible measurement of single-molecule conductivity. Science 294, 571–574 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Xiao, X., Xu, B. & Tao, N. Conductance titration of single-peptide molecules. J. Am. Chem. Soc. 126, 5370–5371 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Li, X. et al. Conductance of single alkanedithiols: Conduction mechanism and effect of molecule-electrode contacts. J. Am. Chem. Soc. 128, 2135–2141 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Hu, Y. B., Zhu, Y., Gao, H. J. & Guo, H. Conductance of an ensemble of molecular wires: A statistical analysis. Phys. Rev. Lett. 95, 156803 (2005).

    Article  CAS  Google Scholar 

  15. 15

    Muller, K. H. Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules. Phys. Rev. B 73, 045403 (2006).

    Article  CAS  Google Scholar 

  16. 16

    Lee, M. H., Speyer, G. & Sankey, O. F. Electron transport through single alkane molecules with different contact geometries on gold. Phys. Status Solidi B 243, 2021–2029 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Ishizuka, K. et al. Effect of molecule-electrode contacts on single-molecule conductivity of mu-conjugated system measured by scanning tunnelling microscopy under ultrahigh vacuum. Japn. J. Appl. Phys. 1 45, 2037–2040 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Chidsey, C. E. D. Free energy and temperature dependence of electron transfer at the metal–electrolyte interface. Science 251, 919–922 (1991).

    CAS  Article  Google Scholar 

  19. 19

    Bumm, L. A. et al. Are single molecular wires conducting? Science 271, 1705–1707 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Kergueris, C. et al. Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59, 12505–12513 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Zhitenev, N. B., Meng, H. & Bao, Z. Conductance of small molecular junctions. Phys. Rev. Lett. 88, 226801. (2002).

    CAS  Article  Google Scholar 

  22. 22

    Kim, B., Beebe, J. M., Jun, Y., Zhu, X. Y. & Frisbie, C. D. Correlation between HOMO alignment and contact resistance in molecular junctions: Aromatic thiols versus aromatic isocyanides. J. Am. Chem. Soc. 128, 4970–4971 (2006).

    CAS  Article  Google Scholar 

  23. 23

    He, J. et al. Electronic decay constant of carotenoid polyenes from single-molecule measurements. J. Am. Chem. Soc. 127, 1384–1385 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Xu, B., Li, X., Xiao, X., Sakaguchi, H. & Tao, N. Electromechanical and conductance switching properties of single oligothiophene molecules. Nano Lett. 5, 1491–1495 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Kuznetsov, A. M. & Ulstrup, J. Electron Transfer in Chemistry and Biology. An Introduction to the Theory. (Wiley, Chichester, 1999).

    Google Scholar 

  26. 26

    Weiss, E. A. et al. Conformationally gated switching between superexchange and hopping within oligo-p-phenylene-based molecular wires. J. Am. Chem. Soc. 127, 11842–11850 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Nitzan, A. A relationship between electron-transfer rates and molecular conduction. J. Phys. Chem. A 105, 2677–2679 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Aviram, A. & Ratner, M. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    CAS  Article  Google Scholar 

  29. 29

    Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Metzger, R. M. Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Martin, A. S., Sambles, J. R. & Ashwell, G. J. Molecular rectifier. Phys. Rev. Lett. 70, 218–221 (1993).

    CAS  Article  Google Scholar 

  33. 33

    Ng, M. -K. & Yu, L. Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes. Angew. Chem. Int. Edn 41, 3598–3601 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Jiang, P., Morales, G. M., You, W. & Yu, L. Synthesis of diode molecules and their sequential assembly to control electron transport. Angew. Chem. Int. Edn 43, 4471–4475 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Smit, R. H. M. et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Elbing, M. et al. A single-molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Liu, R., Ke, S. H., Yang, W. T. & Baranger, H. U. Organometallic molecular rectification. J. Chem. Phys. 124, 024718 (2006).

    Article  CAS  Google Scholar 

  38. 38

    Reichert, J. et al. Driving current through single organic molecules. Phy. Rev. Lett. 88, 176804 (2002).

    CAS  Article  Google Scholar 

  39. 39

    Kushmerick, J. G., Whitaker, C. M., Pollack, S. K., Schull, T. L. & Shashidar, R. Tuning current rectification across molecular junctions. Nanotechnology 15, S489–S493 (2004).

    CAS  Article  Google Scholar 

  40. 40

    Chabinyc, M. L. et al. Molecular rectification in a metal-insulator-metal junction based on self-assembled monolayers. J. Am. Chem. Soc. 124, 11730–11736 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Xiao, X., Xu, B. & Tao, N. Changes in the conductance of single peptide molecules upon metal-ion binding. Angew. Chem. Int. Edn 43, 6148–6152 (2004).

    CAS  Article  Google Scholar 

  42. 42

    McCreery, R. et al. Molecular rectification and conductance switching in carbon-based molecular junctions by structural rearrangement accompanying electron injection. J. Am. Chem. Soc. 125, 10748–10758 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Mujica, V., Ratner, M. A. & Nitzan, A. Molecular rectification: why is it so rare? Chem. Phys. 281, 147–150 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Troisi, A. & Ratner, M. A. Conformational molecular rectifiers. Nano Lett. 4, 591–595 (2004).

    CAS  Article  Google Scholar 

  45. 45

    Xue, Y. Q. et al. Negative differential resistance in the scanning-tunneling spectroscopy of organic molecules. Phys. Rev. B 59, R7852–R7855 (1999).

    CAS  Article  Google Scholar 

  46. 46

    Fan, F. R. F. et al. Charge transport through self-assembled monolayers of compounds of interest in molecular electronics. J. Am. Chem. Soc. 124, 5550–5560 (2002).

    CAS  Article  Google Scholar 

  47. 47

    Rawlett, A. M. et al. Electrical measurements of a dithiolated electronic molecule via conducting atomic force microscopy. Appl. Phys. Lett. 81, 3043–3045 (2002).

    CAS  Article  Google Scholar 

  48. 48

    Xiao, X., Nagahara, L. A., Rawlett, A. M. & Tao, N. Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J. Am. Chem. Soc. 127, 9235–9240 (2005).

    CAS  Article  Google Scholar 

  49. 49

    Le, J. D., He, Y., Hoye, T. R., Mead, C. C. & Kiehl, R. A. Negative differential resistance in a bilayer molecular junction. Appl. Phys. Lett. 83, 5518–5520 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Kiehl, R. A., Le, J. D., Candra, P., Hoye, R. C. & Hoye, T. R. Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions. Appl. Phys. Lett. 88, 172102 (2006).

    Article  CAS  Google Scholar 

  51. 51

    Wassel, R. A. C., Grace, M., Fuierer, R. R., Feldheim, D. L. & Gorman, C. B. Attenuating negative differential resistance in an electroactive self-assembled monolayer-based junction. J. Am. Chem. Soc. 126, 295–300 (2004).

    CAS  Article  Google Scholar 

  52. 52

    Zeng, C., Wang, H., Wang, B., Yang, J. & Hou, J. G. Negative differential-resistance device involving two C60 molecules. Appl. Phys. Lett. 77, 3595–3597 (2000).

    CAS  Article  Google Scholar 

  53. 53

    Guisinger, N. P., Greene, M. E., Basu, R., Baluch, A. S. & Hersam, M. C. Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett. 4, 55–59 (2004).

    CAS  Article  Google Scholar 

  54. 54

    Salomon, A., Arad-Yellin, R., Shanzer, A., Karton, A. & Cahen, D. Stable room-temperature molecular negative differential resistance based on molecule-electrode interface chemistry. J. Am. Chem. Soc. 126, 11648–11657 (2004).

    CAS  Article  Google Scholar 

  55. 55

    Gaudioso, J. & Ho, W. Steric turnoff of vibrationally mediated negative differential resistance in a single molecule. Angew. Chem. Int. Edn 40, 4080–4082 (2001).

    CAS  Article  Google Scholar 

  56. 56

    Fan, F. R. F. et al. Electrons are transported through phenylene-ethynylene oligomer monolayers via localized molecular orbitals. J. Am. Chem. Soc., 126, 2568–2573 (2004).

    CAS  Article  Google Scholar 

  57. 57

    Karzazi, Y., Cornil, J. & Brédas, J. L. Negative differential resistance behavior in conjugated molecular wires incorporating spacers: A quantum-chemical description. J. Am. Chem. Soc. 123, 10076–10084 (2001).

    CAS  Article  Google Scholar 

  58. 58

    Emberly, E. G. & Kirczenow, G. Current-driven conformational changes, charging, and negative differential resistance in molecular wires. Phys. Rev. B 64, 125318 (2001).

    Article  CAS  Google Scholar 

  59. 59

    Galperin, M., Ratner, M. A. & Nitzan, A. Hysteresis, switching, and negative differential resistance in molecular junctions: A polaron model. Nano Lett. 5, 125–130 (2005).

    CAS  Article  Google Scholar 

  60. 60

    He, J. & Lindsay, S. M. On the mechanism of negative differential resistance in ferrocenylundecanethiol self-assembled monolayers. J. Am. Chem. Soc. 127, 11932–11933 (2005).

    CAS  Article  Google Scholar 

  61. 61

    Pitters, J. L. & Wolkow, R. A. Detailed studies of molecular conductance using atomic resolution scanning tunneling microscopy. Nano Lett. 6, 390–397 (2006).

    CAS  Article  Google Scholar 

  62. 62

    Reed, M. A., Chen, J., Rawlett, A. M., Price, D. W. & Tour, J. M. Molecular random access memory cell. Appl. Phys. Lett. 78, 3735–3737 (2001).

    CAS  Article  Google Scholar 

  63. 63

    Cai, L. T. et al. Reversible bistable switching in nanoscale thiol-substituted oligoaniline molecular junctions. Nano Lett. 5, 2365–2372 (2005).

    CAS  Article  Google Scholar 

  64. 64

    Moonen, N. N. P., Flood, A. H., Fernandez, J. M. & Stoddart, J. F. Towards a rational design of molecular switches and sensors from their basic building blocks. Top. Curr. Chem. 262, 99–132 (2005).

    CAS  Article  Google Scholar 

  65. 65

    Stewart, D. R. et al. Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4, 133–136 (2004).

    CAS  Article  Google Scholar 

  66. 66

    Blum, A. S. et al. Molecularly inherent voltage-controlled conductance switching. Nature Mater. 4, 167–172 (2005).

    CAS  Article  Google Scholar 

  67. 67

    Keane, Z. K., Ciszek, J. W., Tour, J. M. & Natelson, D. Three-terminal devices to examine single-molecule conductance switching. Nano Lett. 6, 1518–1521 (2006).

    CAS  Article  Google Scholar 

  68. 68

    Qiu, X. H., Nazin, G. V. & Ho, W. Mechanisms of reversible conformational transitions in a single molecule. Phys. Rev. Lett. 93, 196806 (2004).

    CAS  Article  Google Scholar 

  69. 69

    Di Ventra, M., Pantelides, S. T. & Lang, N. D. The benzene molecule as a molecular resonant-tunneling transistor. Appl. Phys. Lett. 76, 3448–3450 (2000).

    CAS  Article  Google Scholar 

  70. 70

    Damle, P., Rakshit, T., Paulsson, M. & Datta, S. Current-voltage characteristics of molecular conductors: two versus three terminal. IEEE T. Nanotechnol. 1, 145–1153 (2002).

    Article  Google Scholar 

  71. 71

    Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    CAS  Article  Google Scholar 

  72. 72

    Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    CAS  Article  Google Scholar 

  73. 73

    Liang, W. J., Shores, M., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    CAS  Article  Google Scholar 

  74. 74

    Li, C. Z., Bogozi, A., Huang, W. & Tao, N. J. Fabrication of stable metallic nanowires with quantized conductance. Nanotechnology 10, 221–223 (1999).

    Article  Google Scholar 

  75. 75

    Morpurgo, A. F., Marcus, C. M. & Robinson, D. B. Controlled fabrication of metallic electrodes with atomic separation. Appl. Phys. Lett. 14, 2082 (1999).

    Google Scholar 

  76. 76

    Lee, J. -O. et al. Absence of strong gate effects in electrical measurements on phenylene-based conjugated molecules. Nano Lett. 3, 113–117 (2003).

    CAS  Article  Google Scholar 

  77. 77

    Luber, S. M. et al. Nanometre spaced electrodes on a cleaved AlGaAs surface. Nanotechnology 16, 1182–1185 (2005).

    CAS  Article  Google Scholar 

  78. 78

    Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    CAS  Article  Google Scholar 

  79. 79

    Ghosh, S. et al. Device structure for electronic transport through individual molecules using nanoelectrodes. Appl. Phys. Lett. 87, 233509 (2005).

    Article  CAS  Google Scholar 

  80. 80

    Champagne, A. R., Pasupathy, A. N. & Ralph, D. C. Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett. 5, 305–308 (2005).

    CAS  Article  Google Scholar 

  81. 81

    Dadosh, T. et al. Measurement of the conductance of single conjugated molecules. Nature 436, 677–680 (2005).

    CAS  Article  Google Scholar 

  82. 82

    Chae, D. H. et al. Vibrational excitations in single trimetal-molecule transistors. Nano Lett. 6, 165–168 (2006).

    CAS  Article  Google Scholar 

  83. 83

    Haiss, W. et al. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125, 15294–15295 (2003).

    CAS  Article  Google Scholar 

  84. 84

    Xu, B., Xiao, X., Yang, X., Zang, L. & Tao, N. Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 127, 2386–2387 (2005).

    CAS  Article  Google Scholar 

  85. 85

    Chen, F. et al. A molecular switch based on potential-induced changes of oxidation state. Nano Lett. 5, 503–506 (2005).

    CAS  Article  Google Scholar 

  86. 86

    Albrecht, T., Guckian, A., Ulstrup, J. & Vos, J. G. Transistor-like behavior of transition metal complexes. Nano Lett. 5, 1451–1455 (2005).

    CAS  Article  Google Scholar 

  87. 87

    Li, Z. et al. Two-dimensional assembly and local redox-activity of molecular hybrid structures in an electrochemical environment. Faraday Discuss. 131, 121–143 (2006).

    CAS  Article  Google Scholar 

  88. 88

    Tao, N. J. Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling mircoscopy. Phys. Rev. Lett. 76, 4066–4069 (1996).

    CAS  Article  Google Scholar 

  89. 89

    Gittins, D. I., Bethell, D., Schiffrin, D. J. & Nichols, R. J. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408, 67–69 (2000).

    CAS  Article  Google Scholar 

  90. 90

    Tran, E., Rampi, M. A. & Whitesides, G. M. Electron transfer in a Hg-SAM//SAM-Hg junction mediated by redox centers. Angew. Chem., Int. Edn 43, 3835–3839 (2004).

    CAS  Article  Google Scholar 

  91. 91

    Mujica, V., Nitzan, A., Datta, S., Ratner, M. A. & Kubiak, C. P. Molecular wire junctions: Tuning the conductance. J. Phys. Chem. B 107, 91–95 (2003).

    CAS  Article  Google Scholar 

  92. 92

    Kasibhatla, B. S. T. et al. Reversibly altering electronic conduction through a single molecule by a chemical binding event. J. Phys. Chem. B 107, 12378–12382 (2003).

    CAS  Article  Google Scholar 

  93. 93

    Piva, P. G. et al. Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005).

    CAS  Article  Google Scholar 

  94. 94

    Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    CAS  Article  Google Scholar 

  95. 95

    Troisi, A. & Ratner, M. A. Conformational molecular rectifiers. Nano Lett. 4, 591–595 (2004).

    CAS  Article  Google Scholar 

  96. 96

    Joachim, C. & Gimzewski, J. K. An electromechanical amplifier using a single molecule. Chem. Phys. Lett. 265, 353–357 (1997).

    CAS  Article  Google Scholar 

  97. 97

    Park, H. et al. Nanomechanical oscillations in a single-C-60 transistor. Nature 407, 57–60 (2000).

    CAS  Article  Google Scholar 

  98. 98

    Cao, J., Wang, Q. & Dai, H. Electromechanical Properties of Metallic, Quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 90, 157601 (2003).

    Article  CAS  Google Scholar 

  99. 99

    Minot, E. D. et al. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003).

    CAS  Article  Google Scholar 

  100. 100

    Kaun, C. C. & Seideman, T. Current-driven oscillations and time-dependent transport in nanojunctions. Phys. Rev. Lett. 94, 226801 (2005).

    Article  CAS  Google Scholar 

  101. 101

    Brwone, W. R. & Feringa, B. Nature Nanotech. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  102. 102

    Dulic, D. et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

    Article  CAS  Google Scholar 

  103. 103

    He, J. et al. Switching of a photochromic molecule on gold electrodes: single-molecule measurements. Nanotechnology 16, 695–702 (2005).

    CAS  Article  Google Scholar 

  104. 104

    Li, J., Speyer, G. & Sankey, O. F. Conduction switching of photochromic molecules. Phys. Rev. Lett. 93, 248302 (2004).

    Article  CAS  Google Scholar 

  105. 105

    Moskalets, M. & Büttiker, M. Adiabatic quantum pump in the presence of external ac voltages. Phys. Rev. B 69, 205316 (2004).

    Article  CAS  Google Scholar 

  106. 106

    Galperin, M. & Nitzan, A. Current-induced light emission and light-induced current in molecular-tunneling junctions. Phys. Rev. Lett. 95, 206802 (2005).

    Article  CAS  Google Scholar 

  107. 107

    Lehmann, J., Camalet, S., Kohler, S. & Hänggi, P. Laser controlled molecular switches and transistors. Chem. Phys. Lett. 368, 282–288 (2003).

    CAS  Article  Google Scholar 

  108. 108

    Flaxer, E., Sneh, O. & Chesnovsky, O. Molecular light-emission induced by inelastic electron-tunneling. Science 262, 2012–2014 (1993).

    CAS  Article  Google Scholar 

  109. 109

    Berndt, R. et al. Photon-emission at molecular resolution induced by a scanning tunneling microscope. Science 262, 1425–1427 (1993).

    CAS  Article  Google Scholar 

  110. 110

    Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    CAS  Article  Google Scholar 

  111. 111

    Buker, J. & Kirczenow, G. Two-probe theory of scanning tunneling microscopy of single molecules: Zn(II)-etioporphyrin on alumina. Phys. Rev. B 72, 205338 (2005).

    Article  CAS  Google Scholar 

  112. 112

    Lee, T. H., Gonzalez, J. I., Zheng, J. & Dickson, R. M. Single-molecule optoelectronics. Acc. Chem. Res. 38, 534–541 (2005).

    CAS  Article  Google Scholar 

  113. 113

    Emberly, E. G. & Kirczenow, G. Molecular spintronics: spin-dependent electron transport in molecular wires. Chem. Phys. 281, 311–324 (2002).

    CAS  Article  Google Scholar 

  114. 114

    Pati, R., Senapati, L., Ajayan, P. M. & Nayak, S. K. First-principles calculations of spin-polarized electron transport in a molecular wire: Molecular spin valve. Phys. Rev. B 68, 100407 (2003).

    Article  CAS  Google Scholar 

  115. 115

    Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    CAS  Article  Google Scholar 

  116. 116

    Waldron, D., Haney, P., Larade, B., MacDonald, A. & Guo, H. Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Phys. Rev. Lett. 96, 166804 (2006).

    Article  CAS  Google Scholar 

  117. 117

    Ouyang, M. & Awschalom, D. D. Coherent spin transfer between molecularly bridged quantum dots. Science 301, 1074–1078 (2003).

    CAS  Article  Google Scholar 

  118. 118

    Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    CAS  Article  Google Scholar 

  119. 119

    Petta, J. R., Slater, S. K. & Ralph, D. C. Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93, 136601 (2004).

    CAS  Article  Google Scholar 

  120. 120

    Pasupathy, A. N. et al. The Kondo Effect in the Presence of Ferromagnetism. Science 306, 86–89 (2005).

    Article  CAS  Google Scholar 

  121. 121

    Boon, E. M., Ceres, D. M., Drummond, T. G., Hill, M. G. & J. K. Barton, J. K. Mutation detection by electrocatalysis at DNA-modified electrodes. Nature Biotechnol. 18, 1096–1100 (2000).

    CAS  Article  Google Scholar 

  122. 122

    Hihath, J., Xu, B., Zhang, P. & Tao, N. Study of single-nucleotide polymorphisms by means of electrical conductance measurements. Proc. Natl Acad. Sci. USA 102, 16979–16983 (2005).

    CAS  Article  Google Scholar 

  123. 123

    Porath, D., Cuniberti, G. & Di Felice, R. Charge transport in DNA-based devices. Top. Curr. Chem. 237, 183 (2004).

    CAS  Article  Google Scholar 

  124. 124

    Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    CAS  Article  Google Scholar 

  125. 125

    Xue, Y. & Ratner, M. A. End group effect on electrical transport through individual molecules: A microscopic study. Phys. Rev. B 69, 085403 (2004).

    Article  CAS  Google Scholar 

  126. 126

    Basch, H., Cohen, R. & Ratner, M. A. Interface geometry and molecular junction conductance: Geometric fluctuation and stochastic switching. Nano Lett. 5, 1668–1675 (2005).

    CAS  Article  Google Scholar 

  127. 127

    Guo, X. F. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

    CAS  Article  Google Scholar 

  128. 128

    Stewart, M. P. et al. Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. J. Am. Chem. Soc. 126, 370–378 (2004).

    CAS  Article  Google Scholar 

  129. 129

    McGuiness, C. L. et al. Molecular self-assembly at bare semiconductor surfaces: Preparation and characterization of highly organized octadecanethiolate monolayers on GaAs(001). J. Am. Chem. Soc. 128, 5231–5243 (2006).

    CAS  Article  Google Scholar 

  130. 130

    Tulevski, G. S., Myers, M. B., Hybertsen, M. S., Steigerwald, M. L. & Nuckolls, C. Formation of catalytic metal-molecule contacts. Science 309, 591–594 (2005).

    CAS  Article  Google Scholar 

  131. 131

    Li, X. L. et al. Controlling charge transport in single molecules using electrochemical gate. Faraday Discuss. 131, 111–120 (2006).

    Article  Google Scholar 

  132. 132

    Donhauser, Z. J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

    CAS  Article  Google Scholar 

  133. 133

    Ramachandran, G. K. et al. A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300, 1413–1416 (2003).

    CAS  Article  Google Scholar 

  134. 134

    Wassel, R. A., Fuierer, R. R., Kim, N. & Gorman, C. B. Stochastic variation in conductance on the nanometer scale: A general phenomenon. Nano Lett. 3, 1617–1620 (2003).

    CAS  Article  Google Scholar 

  135. 135

    Ralls, K. S. et al. Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low-frequency (1/f?) noise. Phys. Rev. Lett. 52, 228–231 (1984).

    CAS  Article  Google Scholar 

  136. 136

    Dutta, P. & Horn, P. M. Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53, 497–516 (1981).

    CAS  Article  Google Scholar 

  137. 137

    He, H. X. et al. A conducting polymer nanojunction switch. J. Am. Chem. Soc. 123, 7730–7731 (2001).

    CAS  Article  Google Scholar 

  138. 138

    Chen, Y. -C., Zwolak, M. & Di Ventra, M. Local heating in nanoscale conductors. Nano Lett. 3, 1691 (2003).

    CAS  Article  Google Scholar 

  139. 139

    Huang, Z. F., Xu, B. Q., Chen, Y. C., Di Ventra, M. & Tao, N. J. Measurement of current-induced local heating in a single molecule junction. Nano Lett. 6, 1240–1244 (2006).

    CAS  Article  Google Scholar 

  140. 140

    Li, W. J. et al. Ballistic electron emission microscopy studies of Au/molecule/n-GaAs diodes. J. Phys. Chem. B 109, 6252–6256 (2005).

    CAS  Article  Google Scholar 

  141. 141

    Lefenfeldt, M. et al. Direct structural observation of a molecular junction by high-energy x-ray reflectometry. Proc. Natl Acad. Sci. USA 103, 2541–2545 (2006).

    Article  CAS  Google Scholar 

  142. 142

    Kushmerick, J. G. et al. Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004).

    CAS  Article  Google Scholar 

  143. 143

    Wang, W. Y., Lee, T., Kretzschmar, I. & Reed, M. A. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 4, 643–646 (2004).

    CAS  Article  Google Scholar 

  144. 144

    McCreery, R. L. Analytical challenges in molecular electronics. Anal. Chem. 78, 3490–3497 (2006).

    CAS  Article  Google Scholar 

  145. 145

    Seideman, T. & Guo, H. Quantum transport and current-triggered dynamics in molecular tunnel junctions. J. Theor. Comp. Chem. 2, 439–458 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

I thank Hong Guo, Fang Chen and Josh Hihath for critical reading of the manuscript and NSF, DOE, VW and DARPA for support.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tao, N. Electron transport in molecular junctions. Nature Nanotech 1, 173–181 (2006). https://doi.org/10.1038/nnano.2006.130

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research