Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Routes to remembering: the brains behind superior memory

Abstract

Why do some people have superior memory capabilities? We addressed this age-old question by examining individuals renowned for outstanding memory feats in forums such as the World Memory Championships. Using neuropsychological measures, as well as structural and functional brain imaging, we found that superior memory was not driven by exceptional intellectual ability or structural brain differences. Rather, we found that superior memorizers used a spatial learning strategy, engaging brain regions such as the hippocampus that are critical for memory and for spatial memory in particular. These results illustrate how functional neuroimaging might prove valuable in delineating the neural substrates of mnemonic techniques, which could broaden the scope for memory improvement in the general population and the memory-impaired.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Examples of the stimuli.
Figure 2: Graphic representation of the structure of a sample learning and control trial during scanning (see Methods for details).
Figure 3: Functional MRI results showing differences between the SMs and controls.

References

  1. Yates, F.A. The Art of Memory (Pimlico, London, 1966).

  2. Luria, A.R. The Mind of a Mnemonist (Penguin, Harmondsworth, UK, 1975).

  3. Wilding, J. & Valentine, E. Superior Memory (Psychology Press, Hove, UK, 1997).

  4. Brown, E. & Deffenbacher, K. Forgotten mnemonists. J. Hist. Behav. Sci. 11, 342–349 (1975).

    Article  CAS  Google Scholar 

  5. Neisser, U. Memory Observed: Remembering in Natural Contexts 377–381 (Freeman, San Francisco, 1982).

  6. Amidzic, O., Riehle, H.J., Fehr, T., Wienbruch, C. & Elbert, T. Pattern of focal y-bursts in chess players. Nature 412, 603 (2001).

  7. Presenti, M. et al. Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas. Nat. Neurosci. 4, 103–107 (2001).

    Article  Google Scholar 

  8. Gauthier, I., Skudlarski, P., Gore, J.C. & Anderson, A.W. Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3, 191–197 (2000).

    Article  CAS  Google Scholar 

  9. Butcher, J. O'Brien—master mnemonist. The Lancet 356, 836 (2000).

  10. Maguire, E.A. et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. USA 97, 4398–4403 (2000).

    Article  CAS  Google Scholar 

  11. Schlaug, G., Jancke, L., Huang, Y. & Steinmetz, H. In vivo evidence of structural brain asymmetry in musicians. Science 267, 699–701 (1995).

    Article  CAS  Google Scholar 

  12. Ashburner, J. & Friston, K.J. Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000).

    Article  CAS  Google Scholar 

  13. Gadian, D.G. et al. Developmental amnesia associated with early hypoxic-ischemic injury. Brain 123, 499–507 (2000).

    Article  Google Scholar 

  14. Good, C.D. et al. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel based morphometric analysis of 465 normal adult human brains. Neuroimage 14, 685–700 (2001).

    Article  CAS  Google Scholar 

  15. Bentley, W.A. & Humphreys, W.J. Snow Crystals (Dover, New York, 1962).

    Google Scholar 

  16. Tomaiuolo, F. et al. Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis. Eur. J. Neurosci. 11, 3033–3046 (1999).

    Article  CAS  Google Scholar 

  17. Maguire, E.A. et al. Knowing where, and getting there: a human navigation network. Science 280, 921–924 (1998).

    Article  CAS  Google Scholar 

  18. Burgess, N., Maguire, E.A. & O'Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002).

    Article  CAS  Google Scholar 

  19. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, Oxford, 1978).

    Google Scholar 

  20. Maguire, E.A. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand. J. Psychol. 42, 225–238 (2001).

    Article  CAS  Google Scholar 

  21. Bellezza, F.S. Mnemonic devices: classification, characteristics and criteria. Rev. Educ. Res. 51, 247–275 (1981).

    Article  Google Scholar 

  22. Bower, G.H. Analysis of a mnemonic device. Am. Scientist 58, 496–510 (1970).

    Google Scholar 

  23. Toni, I. & Passingham, R.E. Prefrontal-basal ganglia pathways are involved in the learning of arbitrary visuomotor associations: a PET study. Exp. Brain Res. 127, 19–32 (1999).

    Article  CAS  Google Scholar 

  24. Dolan, R.J. & Fletcher, P.C. Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature 388, 582–585 (1997).

    Article  CAS  Google Scholar 

  25. Chase, W.G. & Ericsson, K.A. Skill and working memory. in The Psychology of Learning and Motivation Vol. 16 (ed. Bower, G.H.) 1–58 (Academic, New York, 1982).

    Google Scholar 

  26. Roediger, H.L. The effectiveness of four mnemonics in ordering recall. J. Exp. Psych. Hum. Learn. Mem. 6, 558–567 (1980).

    Article  Google Scholar 

  27. Verhaeghen, P. & Marcoen, A. On the mechanisms of plasticity in young and older adults after instruction in the method of loci: evidence for an amplification model. Psychol. Aging 11, 164–178 (1996).

    Article  CAS  Google Scholar 

  28. Bender, B.G. & Levin, J.R. Pictures, imagery, and retarded children's prose learning. J. Educ. Psych. 70, 583–588 (1978).

    Article  CAS  Google Scholar 

  29. Richardson, J.T.E. The efficacy of imagery mnemonics in memory remediation. Neuropsychologia 33, 1345–1357 (1995).

    Article  CAS  Google Scholar 

  30. Wilson, B.A. Memory rehabilitation. in Neuropsychology of Memory 3rd edn. (eds. Squire, L.R. & Schacter, D.L.) 263–272 (Guilford Press, New York, 2002).

    Google Scholar 

  31. Deichmann, R., Good, C.D., Josephs, O., Ashburner, J. & Turner, R. Optimization of 3D MP-RAGE sequences for structural brain imaging. Neuroimage 12, 112–127 (2000).

    Article  CAS  Google Scholar 

  32. Maguire, E.A., Vargha-Khadem, F. & Mishkin, M. The effects of bilateral hippocampal damage on fMRI regional activations and interactions during memory retrieval. Brain 124, 1156–1170 (2001).

    Article  CAS  Google Scholar 

  33. Oldfield, R.C. The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9, 97–113 (1971).

    Article  CAS  Google Scholar 

  34. Nelson, H.E. & Wilson, J.R. National Adult Reading Test (NART) 2nd edn. (Berkshire, Windsor, UK, 1991).

    Google Scholar 

  35. Wechsler Abbreviated Scale of Intelligence (WASI). (The Psychological Corporation, San Antonio, Texas, 1999).

  36. Rey, A. L'examen psychologique dans les cas d'encephalopathy. Archives de Psychologie 28, 286–340 (1942).

    Google Scholar 

  37. Osterrieth, P.A. Le test de copie d'une figure complexe. Archives de Psychologie 30, 206–356 (1944).

    Google Scholar 

  38. Coughlan, A. & Hollows, S.E. Adult Memory and Information Processing Battery (AMIPB). Psychology Department, St. James Hospital, Leeds, UK (1985).

    Google Scholar 

  39. Wechsler Adult Intelligence Scale – Revised (British Adaptation) (WAIS-R). (The Psychological Corporation, San Antonio, Texas, 1986).

  40. Bennett-Levy, J., Polkey, C.E. & Powell, G. Self-report of memory skills after temporal lobectomy: the effect of clinical variables. Cortex 16, 543–557 (1980).

    Article  CAS  Google Scholar 

  41. McMillan, T.M. Investigation of everyday memory in normal subjects using the Subjective Memory Questionnaire (SMQ). Cortex 20, 333–347 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust and the University of London Central Research Fund. We thank D. Passingham, U. Noppeney, C. Good, T. Singer, J. Winston and P. Abbott for assistance and advice. We are also grateful for the interest and participation of all the superior memorizers and control volunteers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor A. Maguire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maguire, E., Valentine, E., Wilding, J. et al. Routes to remembering: the brains behind superior memory. Nat Neurosci 6, 90–95 (2003). https://doi.org/10.1038/nn988

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn988

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing