Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereoscopic depth processing in the visual cortex: a coarse-to-fine mechanism

Abstract

For binocular animals viewing a three-dimensional scene, the left and right eyes receive slightly different information, and the brain uses this 'binocular disparity' to interpret stereoscopic depth. An important theoretical conjecture in this mechanism is that coarse processing precedes and constrains finely detailed processing. We present three types of neurophysiological data from the cat's visual cortex that are consistent with a temporal coarse-to-fine tuning of disparity information. First, the disparity tuning of cortical cells generally sharpened during the time course of response. Second, cells responsive to large and small spatial scale had relatively shorter and longer temporal latencies, respectively. Third, cross-correlation analysis between simultaneously recorded pairs of cortical cells showed that connections between disparity-tuned neurons were generally stronger for coarse-to-fine processing than for fine-to-coarse processing. These results are consistent with theoretical and behavioral studies and suggest that rapid, coarse percepts are refined over time in stereoscopic depth perception.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An example of the temporal coarse-to-fine disparity tuning of complex cells.
Figure 2: Three examples of complex cells show that disparity tuning becomes sharper with increasing correlation delay.
Figure 3: A population summary of changes in disparity frequency and disparity range.
Figure 4: Neurons with higher disparity frequency and smaller disparity range tend to have greater optimal correlation delays.
Figure 5: Examples of fine-to-coarse and coarse-to-fine connections between disparity-tuned complex cells.
Figure 6: Asymmetries in coarse-to-fine and fine-to-coarse connections.

Similar content being viewed by others

References

  1. Wheatstone, C. Contributions to the physiology of vision. Part the first: on some remarkable and hirtherto unobserved phenomena of binocular vision. Phil. Trans. R. Soc. Lond. 128, 371–394 (1838).

    Article  Google Scholar 

  2. Anzai, A., Ohzawa, I. & Freeman, R.D. Neural mechanisms for processing binocular information I. Simple cells. J. Neurophysiol. 82, 891–908 (1999).

    Article  CAS  Google Scholar 

  3. Anzai, A., Ohzawa, I. & Freeman, R.D. Neural mechanisms for processing binocular information II. Complex cells. J. Neurophysiol. 82, 909–924 (1999).

    Article  CAS  Google Scholar 

  4. Ohzawa, I., DeAngelis, G.C. & Freeman, R.D. Encoding of binocular disparity by complex cells in the cat's visual cortex. J. Neurophysiol. 77, 2879–2909 (1997).

    Article  CAS  Google Scholar 

  5. Marr, D. & Poggio, T.A., computational theory of human stereo vision. Proc. R. Soc. Lond. B Biol. Sci. 204, 301–328 (1979).

    Article  CAS  Google Scholar 

  6. Wilson, H.R., Blake, R. & Halpern, D.L. Coarse spatial scales constrain the range of binocular fusion on fine scales. J. Opt. Soc. Am. A 8, 229–236 (1991).

    Article  CAS  Google Scholar 

  7. Fleet, D.J., Wagner, H. & Heeger, D.J. Neural encoding of binocular disparity: energy models, position shifts and phase shifts. Vision Res. 36, 1839–1857 (1996).

    Article  CAS  Google Scholar 

  8. Rohaly, A.M. & Wilson, H.R. Nature of coarse-to-fine constraints on binocular fusion. J. Opt. Soc. Am. A 10, 2433–2441 (1993).

    Article  CAS  Google Scholar 

  9. Anderson, C.H. & Van Essen, D.C. Shifter circuits: a computational strategy for dynamic aspects of visual processing. Proc. Natl. Acad. Sci. USA 84, 6297–6301 (1987).

    Article  CAS  Google Scholar 

  10. Nishihara, H.K. Practical real-time imaging stereo matcher. Opt. Eng. 23, 536–545 (1984).

    Article  Google Scholar 

  11. Nomura, M. A model for neural representation of binocular disparity in striate cortex: distributed representation and veto mechanism. Biol. Cybern. 69, 165–171 (1993).

    Article  CAS  Google Scholar 

  12. Quam, L.H. Hierarchical warp stereo. in Readings in Computer Vision (eds. Fischler, M.A. & Firschein, O.) 80–86 (Kauffman, Los Altos, California, 1987).

    Google Scholar 

  13. Smallman, H.S. Fine-to-coarse scale disambiguation in stereopsis. Vision Res. 35, 1047–1060 (1995).

    Article  CAS  Google Scholar 

  14. Smallman, H.S. & MacLeod, D.I. Spatial scale interactions in stereo sensitivity and the neural representation of binocular disparity. Perception 26, 977–994 (1997).

    Article  CAS  Google Scholar 

  15. Sanger, T.D. Stereo disparity computation using gabor filters. Biol. Cybern. 59, 405–418 (1988).

    Article  Google Scholar 

  16. Qian, N. & Zhu, Y. Physiological computation of binocular disparity. Vision Res. 37, 1811–1827 (1997).

    Article  CAS  Google Scholar 

  17. Ohzawa, I., DeAngelis, G.C. & Freeman, R.D. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249, 1037–1041 (1990).

    Article  CAS  Google Scholar 

  18. Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. Numerical Recipes in C (Cambridge Univ. Press, Cambridge, UK, 1992).

    Google Scholar 

  19. Ringach, D.L., Hawken, M.J. & Shapley, R. Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 (1997).

    Article  CAS  Google Scholar 

  20. Bredfeldt, C.E. & Ringach, D.L. Dynamics of spatial frequency tuning in macaque V1. J. Neurosci. 22, 1976–1984 (2002).

    Article  CAS  Google Scholar 

  21. Mazer, J.A., Vinje, W.E., McDermott, J., Schiller, P.H. & Gallant, J.L. Spatial frequency and orientation tuning dynamics in area V1. Proc. Natl. Acad. Sci. USA 99, 1645–1650 (2002).

    Article  CAS  Google Scholar 

  22. Pack, C.C. & Born, R.T. Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature 409, 1040–1042 (2001).

    Article  CAS  Google Scholar 

  23. Parker, D.M., Lishman, J.R. & Hughes, J. Evidence for the view that temporospatial integration in vision is temporally anisotropic. Perception 26, 1169–1180 (1997).

    Article  CAS  Google Scholar 

  24. Rohaly, A.M. & Wilson, H.R. Disparity averaging across spatial scales. Vision Res. 34, 1315–1325 (1994).

    Article  CAS  Google Scholar 

  25. DeAngelis, G.C., Ohzawa, I. & Freeman, R.D. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. J. Neurophysiol. 69, 1091–1117 (1993).

    Article  CAS  Google Scholar 

  26. Li, G. Robust regression. in Exploring Data Tables, Trends and Shapes (eds. Hoaglin, D.C., Mosteller, F. & Tukey, J.W.) 281–340 (Wiley, New York, 1985).

    Google Scholar 

  27. Moore, G.P., Segundo, J.P., Perkel, D.H. & Levitan, H. Statistical signs of synaptic interaction in neurons. Biophys. J. 10, 876–900 (1970).

    Article  CAS  Google Scholar 

  28. Perkel, D.H., Gerstein, G.L. & Moore, G.P. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7, 419–440 (1967).

    Article  CAS  Google Scholar 

  29. Alonso, J.M. & Martinez, L.M. Functional connectivity between simple cells and complex cells in cat striate cortex. Nat. Neurosci. 1, 395–403 (1998).

    Article  CAS  Google Scholar 

  30. Aertsen, A.M. & Gerstein, G.L. Evaluation of neuronal connectivity: sensitivity of cross-correlation. Brain Res. 340, 341–354 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research and CORE grants (EY01175 and EY03716) from the National Eye Institute. We gratefully acknowledge the use of data collected by I. Ohzawa and A. Anzai.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menz, M., Freeman, R. Stereoscopic depth processing in the visual cortex: a coarse-to-fine mechanism. Nat Neurosci 6, 59–65 (2003). https://doi.org/10.1038/nn986

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn986

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing