Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human fMRI evidence for the neural correlates of preparatory set

Abstract

We used functional magnetic resonance imaging (fMRI) to study readiness and intention signals in frontal and parietal areas that have been implicated in planning saccadic eye movements—the frontal eye fields (FEF) and intraparietal sulcus (IPS). To track fMRI signal changes correlated with readiness to act, we used an event-related design with variable gap periods between disappearance of the fixation point and appearance of the target. To track changes associated with intention, subjects were instructed before the gap period to make either a pro-saccade (look at target) or an anti-saccade (look away from target). FEF activation increased during the gap period and was higher for anti- than for pro-saccade trials. No signal increases were observed during the gap period in the IPS. Our findings suggest that within the frontoparietal networks that control saccade generation, the human FEF, but not the IPS, is critically involved in preparatory set, coding both the readiness and intention to perform a particular movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gap paradigm for the event-related design, and the effect of gap duration on saccadic reaction time.
Figure 2: Pro-saccade localizer map used to identify the frontal eye fields (FEF) and the lateral intraparietal area (IPS).
Figure 3: Event-related time courses for the gap saccade task (solid lines, 4-s gap trials; dashed lines, 2-s gap trials; dotted lines, 0-s gap trials; blue lines, pro-saccades; red lines, anti-saccades).
Figure 4: Quantification of BOLD responses as a function of gap duration (a–c) and memory delay duration (d–f) (solid lines, FEF; dashed lines, IPS; blue lines, pro-saccades; red lines, anti-saccades).
Figure 5: Eye position traces recorded in the scanner during the combined anti-/pro-saccade task.
Figure 6: Event-related time courses for the memory-guided delay saccade task (solid lines, 4-s delay trials; dashed lines, 2-s delay trials; dotted lines, 0-s delay trials; blue lines, pro-saccades; red lines, anti-saccades).
Figure 7: Event-related time courses for the fixation control experiment (solid lines, 4-s gap trials; dashed lines, 2-s gap trials; dotted lines, 0-s gap trials; blue lines, pro-saccades; red lines, anti-saccades).

Similar content being viewed by others

References

  1. Hebb, D.O. Textbook of Physiology 77–93 (Saunders, Philadelphia, 1972).

    Google Scholar 

  2. Evarts, E., Shinoda, Y. & Wise, S. Neurophysiological Approaches to Higher Brain Functions (Wiley, New York, 1984).

    Google Scholar 

  3. Hallett, P. Primary and secondary saccades to goals defined by instructions. Vision Res. 18, 1279–1296 (1978).

    Article  CAS  Google Scholar 

  4. Everling, S. & Fisher, B. The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36, 885–899 (1998).

    Article  CAS  Google Scholar 

  5. Guitton, D., Buchtel, H.A. & Douglas, R.M. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp. Brain Res. 58, 455–472 (1985).

    Article  CAS  Google Scholar 

  6. Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B. & Agid, Y. Cortical control of reflexive visually-guided saccades. Brain 114, 1472–1485 (1991).

    Article  Google Scholar 

  7. Rivaud, S., Muri, R., Gaymard, B., Vermesch, A. & Pierrot-Deseilligny, C. Eye movement disorders after frontal eye field lesions in humans. Exp. Brain Res. 102, 110–120 (1994).

    Article  CAS  Google Scholar 

  8. O'Driscoll, G. et al. Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proc. Natl. Acad. Sci. USA 92, 925–929 (1995).

    Article  CAS  Google Scholar 

  9. Sweeney, J., Mintun, M. & Kwee, S. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. J. Neurophysiol. 75, 454–468 (1996).

    Article  CAS  Google Scholar 

  10. Doricchi, F. et al. Neural control of fast-regular saccades and antisaccades, an investigation using positron emission tomography. Exp. Brain Res. 116, 50–62 (1997).

    Article  CAS  Google Scholar 

  11. Connolly, J.D., Goodale, M.A., DeSouza, J., Menon, R.S. & Vilis, T. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. J. Neurophysiol. 84, 1645–1655 (2000).

    Article  CAS  Google Scholar 

  12. Luna, B. et al. Maturation of widely distributed brain function subserves cognitive development. Neuroimage 13, 786–793 (2001).

    Article  CAS  Google Scholar 

  13. Everling, S. & Munoz, D. Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. J. Neurosci. 20, 387–400 (2000).

    Article  CAS  Google Scholar 

  14. Funahashi, S., Chafee, M. & Goldman-Rakic, P. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–756 (1993).

    Article  CAS  Google Scholar 

  15. Schlag-Rey, M., Amador, N., Sanchez, H. & Schlag, J. Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature 390, 398–401 (1997).

    Article  CAS  Google Scholar 

  16. Dias, E.C. & Bruce, C.J. Physiological correlate of fixation disengagement in the primate's frontal eye field. J. Neurophysiol. 72, 2532–2537 (1994).

    Article  CAS  Google Scholar 

  17. Dorris, M.C. & Munoz, D.P. A neural correlate for the gap effect on saccadic reaction times in monkey. J. Neurophysiol. 73, 2558–2562 (1995).

    Article  CAS  Google Scholar 

  18. Dorris, M.C., Pare, M. & Munoz, D.P. Neuronal activity in monkey superior colliculus accompanying express saccades. J. Neurosci. 17, 8566–8579 (1997).

    Article  CAS  Google Scholar 

  19. Munoz, D.P., Dorris, M.C., Pare, M. & Everling, S. On your mark, get set: brainstem circuitry underlying saccadic initiation. Can. J. Physiol. Pharmacol. 78, 934–944 (2000).

    Article  CAS  Google Scholar 

  20. Gottlieb, J. & Goldberg, M.E. Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nat. Neurosci. 2, 906–912 (1999).

    Article  CAS  Google Scholar 

  21. Saslow, M.G. Effects of components of displacement-setup stimuli upon latency for saccadic eye movements. J. Opt. Soc. Am. 57, 1024–1029 (1967).

    Article  CAS  Google Scholar 

  22. Fischer, B. & Weber, H. Express saccades and visual attention. Behav. Brain Sci. 16, 553–610 (1993).

    Article  Google Scholar 

  23. Munoz, D.P., Broughton, J.R., Goldring, J.E. & Armstrong, I.T. Age-related performance of human subjects on saccadic eye movement tasks. Exp. Brain Res. 121, 391–400 (1998).

    Article  CAS  Google Scholar 

  24. Paus, T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34, 475–483 (1996).

    Article  CAS  Google Scholar 

  25. Sereno, M.I., Pitzalis, S. & Martinez, A. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294, 1350–1354 (2001).

    Article  CAS  Google Scholar 

  26. Pollmann, S., Dove, A., Yves von Cramon, D. & Wiggons, C.J. Event-related fMRI: comparison of conditions with varying BOLD overlap. Hum. Brain Mapp. 9, 26–37 (2000).

    Article  CAS  Google Scholar 

  27. Gaymard, B., Ploner, C.J., Rivaud-Pecoux, S. & Pierrot-Deseilligny, C. The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition. Exp. Brain Res. 129, 288–301 (1999).

    Article  CAS  Google Scholar 

  28. Fischer, B. & Weber, H. Characteristics of “anti” saccades in man. Exp. Brain Res. 89, 415–424 (1992).

    Article  CAS  Google Scholar 

  29. Kurata, K. & Hoffman, D.S. Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys. J. Neurophysiol. 71, 1151–1164 (1994).

    Article  CAS  Google Scholar 

  30. Passingham, R.E. The Frontal Lobes and Voluntary Action (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  31. Kurata, K. Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude and direction of wrist movements. J. Neurophysiol. 69, 187–200 (1993).

    Article  CAS  Google Scholar 

  32. Toni, I., Schluter, N.D., Josephs, O., Friston, K. & Passingham, R.E. Signal set- and movement-related activity in the human brain: an event-related fMRI study. Cereb. Cortex 9, 35–49 (1999).

    Article  CAS  Google Scholar 

  33. Schluter, N.D., Rushworth, M.F.S., Mills, K.R. & Passingham, R.E. Signal-, set-, and movement-related activity in the human premotor cortex. Neuropsychologia 37, 233–243 (1999).

    Article  CAS  Google Scholar 

  34. Wise, S.P. & Kurata, K. Set-related activity in the premotor cortex of rhesus monkeys: effect of triggering cues and relatively long delay intervals. Somatosens. Mot. Res. 6, 455–476 (1989).

    Article  CAS  Google Scholar 

  35. Lee, K., Chang, K. & Roh, J. Subregions within the supplementary motor area activated at different stages of movement preparation and execution. Neuroimage 9, 117–123 (1999).

    Article  CAS  Google Scholar 

  36. Kurata, K., Tsuji, T., Naraki, S., Seino, M. & Abe, Y. Activation of the dorsal premotor cortex and pre-supplementary motor area of humans during an auditory conditional motor task. J. Neurophysiol. 84, 1667–1672 (2000).

    Article  CAS  Google Scholar 

  37. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  Google Scholar 

  38. Everling, S., Dorris, M.C. & Munoz, D.P. Reflex suppression in the anti-saccade task is dependent on prestimulus neural processes. J. Neurophysiol. 80, 1584–1589 (1998).

    Article  CAS  Google Scholar 

  39. Everling, S., Dorris, M.C., Klein, R.M. & Munoz, D.P. Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. J. Neurosci. 19, 2740–2754 (1999).

    Article  CAS  Google Scholar 

  40. Schall, J.D., Morel, A., King, D.J. & Bullier, J. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15, 4464–4487 (1995).

    Article  CAS  Google Scholar 

  41. Stanton, G.B., Bruce, C.J. & Goldberg, M.E. Topography of projections to posterior cortical areas from the macaque frontal eye fields. J. Comp. Neurol. 353, 291–305 (1995).

    Article  CAS  Google Scholar 

  42. Schall, J.D. Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2, 33–42 (2001).

    Article  CAS  Google Scholar 

  43. Colby, C.L. & Goldberg, M.E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    Article  CAS  Google Scholar 

  44. Ben Hamed, S. & Duhamel, J.-R. Ocular fixation and visual activity in the monkey lateral intraparietal area. Exp. Brain Res. 142, 512–528 (2002).

    Article  CAS  Google Scholar 

  45. Colby, C.C., Duhamel, J.-R., & Goldberg, M.E. Visual, presaccadic and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    Article  CAS  Google Scholar 

  46. Umeno, M.M. & Goldberg, M.E. Spatial processing in the monkey frontal eye field. II. Memory responses. J. Neurophysiol. 86, 2344–2352 (2001).

    Article  CAS  Google Scholar 

  47. Snyder, L.H., Batista, A.P. & Andersen, R.A. Intention-related activity in the posterior parietal cortex: a review. Vision Res. 40, 1433–1441 (2000).

    Article  CAS  Google Scholar 

  48. Gaymard, B., Ploner, C.J., Rivaud, S., Vermersch, A.I. & Pierrot-Deseilligny, C. Cortical control of saccades. Exp. Brain Res. 123, 159–163 (1998).

    Article  CAS  Google Scholar 

  49. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).

    Article  CAS  Google Scholar 

  50. Kollias, S.S., Golay, X., Boesiger, P. & Valavanis, A. Dynamic characteristics of oxygenation-sensitive MRI signal in different temporal protocols for imaging human brain activity. Neuroradiology 42, 591–601 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Canadian Institutes of Health Research and the Canada Research Chairs Program. We thank J. Gati for assistance with the fMRI scanning. The Robarts Research Institute provided fMRI services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvyn A. Goodale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connolly, J., Goodale, M., Menon, R. et al. Human fMRI evidence for the neural correlates of preparatory set. Nat Neurosci 5, 1345–1352 (2002). https://doi.org/10.1038/nn969

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn969

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing