Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neuronal correlates of decision-making in secondary somatosensory cortex

Abstract

The ability to discriminate between two sequential stimuli requires evaluation of current sensory information in reference to stored information. Where and how does this evaluation occur? We trained monkeys to compare two mechanical vibrations applied sequentially to the fingertips and to report which of the two had the higher frequency. We recorded single neurons in secondary somatosensory cortex (S2) while the monkeys performed the task. During the first stimulus period, the firing rate of S2 neurons encoded the stimulus frequency. During the second stimulus period, however, some S2 neurons did not merely encode the stimulus frequency. The responses of these neurons were a function of both the remembered (first) and current (second) stimulus. Moreover, a few hundred milliseconds after the presentation of the second stimulus, these responses were correlated with the monkey's decision. This suggests that some S2 neurons may combine past and present sensory information for decision-making.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Discrimination task.
Figure 7: Error trials analysis: neurons that are (f2 − f1)-dependent in response to correct trials are highly correlated with the monkey's choice of button to press.
Figure 2: A representative S2 neuron with a response to the second stimulus (f2) that shifted to reflect the (f2 − f1) comparison.
Figure 3: A representative S2 neuron with an (f2 − f1)-dependence opposite to that of the neuron in Fig. 2.
Figure 4: Area S2 responses to the second stimulus depend on the previously applied first stimulus during the discrimination task.
Figure 5: Response dynamics of six example neurons from area S2.
Figure 6: Population responses gradually become aligned to the a2 = −a1 axis.

References

  1. Mountcastle, V.B., Steinmetz, M.A. & Romo, R. Frequency discrimination in the sense of flutter: psychophysical measurements correlated with postcentral events in behaving monkeys. J. Neurosci. 10, 3032–3044 (1990).

    CAS  Article  Google Scholar 

  2. Hernández, A., Salinas, E., García, R. & Romo, R. Discrimination in the sense of flutter: new psychophysical measurements in monkeys. J. Neurosci. 17, 6391–6400 (1997).

    Article  Google Scholar 

  3. Horwitz, G.D. & Newsome, W.T. Target selection for saccadic eye movements: direction-selective visual responses in the superior colliculus. J. Neurophysiol. 86, 2527–2542 (2001).

    CAS  Article  Google Scholar 

  4. Kim, J.N. & Shadlen, M.N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 (1999).

    Article  Google Scholar 

  5. Platt, M.L. & Glimcher, P.W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    CAS  Article  Google Scholar 

  6. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    CAS  Article  Google Scholar 

  7. Schall, J.D. Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 1, 33–42 (2001).

    Article  Google Scholar 

  8. Salinas, E., Hernández, A., Zainos, A. & Romo, R. Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J. Neurosci. 20, 5503–5515 (2000).

    CAS  Article  Google Scholar 

  9. Hernández, A., Zainos, A. & Romo, R. Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc. Natl. Acad. Sci. USA 97, 6191–6196 (2000).

    Article  Google Scholar 

  10. Romo, R., Hernández, A., Zainos, A. & Salinas, E. Somatosensory discrimination based on cortical microstimulation. Nature 392, 387–390 (1998).

    CAS  Article  Google Scholar 

  11. Romo, R., Hernández, A., Zainos, A., Brody, C.D. & Lemus, L. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26, 273–278 (2000).

    CAS  Article  Google Scholar 

  12. Romo, R., Brody, C.D., Hernández, A. & Lemus, L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399, 470–473 (1999).

    CAS  Article  Google Scholar 

  13. Hernández, A., Zainos, A. & Romo, R. Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33, 959–972 (2002).

    Article  Google Scholar 

  14. Godschalk, M., Lemon, R.N., Kuypers, H.G. & Ronday, H.K. Cortical afferents and efferents of monkey postarcuate area: an anatomical and electrophysiological study. Exp. Brain Res. 56, 410–424 (1984).

    CAS  Article  Google Scholar 

  15. Leichnetz, G.R. Afferent and efferent connections of the dorsolateral precentral gyrus (area 4, hand/arm region) in the macaque monkey, with comparisons to area 8. J. Comp. Neurol. 254, 460–492 (1986).

    CAS  Article  Google Scholar 

  16. Preuss, T.M. & Goldman-Rakic, P.S. Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: anatomical evidence for somatic representation in primate frontal association cortex. J. Comp. Neurol. 282, 293–316 (1989).

    CAS  Article  Google Scholar 

  17. Cavada, C. & Goldman-Rakic, P.S. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J. Comp. Neurol. 287, 393–421 (1989).

    CAS  Article  Google Scholar 

  18. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  Article  Google Scholar 

  19. Tokuno, H. & Tanji, J. Input organization of distal and proximal forelimb areas in the monkey primary motor cortex: a retrograde double labeling study. J. Comp. Neurol. 333, 199–209 (1993).

    CAS  Article  Google Scholar 

  20. Luppino, G., Mattelli, M., Camarda, R.M. & Rizzolatti, G. Cortico-cortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J. Comp. Neurol. 338, 114–140 (1993).

    CAS  Article  Google Scholar 

  21. Carmichael, S.T. & Price, J.L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664 (1995).

    CAS  Article  Google Scholar 

  22. Burton, H. & Sinclair, R.J. in Pain and Touch (ed. Kruger, L.) 105–177 (Academic, San Diego, California, 1996).

    Book  Google Scholar 

  23. Cippolloni, P.B. & Pandya, D.N. Cortical connections of the frontoparietal opercular areas in the rhesus monkey. J. Comp. Neurol. 403, 431–458 (1999).

    Article  Google Scholar 

  24. Jiang, W., Tremblay, F. & Chapman, C.E. Neuronal encoding of texture changes in the primary and the secondary somatosensory cortical areas of monkeys during passive texture discrimination. J. Neurophyisol. 77, 1656–1662 (1997).

    CAS  Article  Google Scholar 

  25. Pruett, J.R., Sinclair, R.J. & Burton, H. Neural correlates for roughness choice in monkey second somatosensory cortex (SII). J. Neurophysiol. 86, 2069–2080 (2001).

    Article  Google Scholar 

  26. Sinclair, R.J. & Burton, H. Neuronal activity in the second somatosensory cortex of monkeys (Macaca mulatta) during active touch of gratings. J. Neurophysiol. 70, 331–350 (1993).

    CAS  Article  Google Scholar 

  27. Hsiao, S.S., O'Shaughnessy, D.M. & Johnson, K.O. Effects of selective attention on spatial form processing in monkey primary and secondary somatosensory cortex. J. Neurophysiol. 70, 444–447 (1993).

    CAS  Article  Google Scholar 

  28. Mishkin, M. Analogous neural models for tactual and visual learning. Neuropsychologia 17, 139–151 (1979).

    CAS  Article  Google Scholar 

  29. Murray, E.A. & Mishkin, M. Relative contributions of SII and area 5 to tactile discrimination in monkeys. Behav. Brain Res. 11, 67–83 (1984).

    CAS  Article  Google Scholar 

  30. Miller, E.K., Li, L. & Desimone, R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 13, 1460–1478 (1993).

    CAS  Article  Google Scholar 

  31. Siegel, S. & Castellan, N.J. Nonparametric Statistics for Behavioral Sciences (McGraw-Hill, New York, 1988).

    Google Scholar 

  32. Draper, N. & Smith, H. Applied Regression Analysis 2nd edn. (Wiley, New York, 1966).

    Google Scholar 

  33. Press, W., Teukolsky, S.A., Vettering, W.T. & Fannery, B.P. Numerical Recipes in C 2nd edn. (Cambridge Univ. Press, Cambridge, U.K., 1992).

    Google Scholar 

  34. Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S. & Movshon, J.A. A relationship between behavioral choice and the visual responses in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    CAS  Article  Google Scholar 

  35. Dodd, J.V., Krug, K., Cumming, B.G. & Parker, A.J. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J. Neurosci. 21, 4809–4821 (2001).

    CAS  Article  Google Scholar 

  36. Ro, J.Y., Debowy, D., Ghosh, S. & Gardner, E.P. Depression of neuronal firing rates in somatosensory and posterior parietal cortex during object acquisition in a prehension task. Exp. Brain Res. 135, 1–11 (2000).

    CAS  Article  Google Scholar 

  37. Chapman, C.E. Active versus passive touch: factors influencing the transmission of somatosensory signals to primary somatosensory cortex. Can. J. Physiol. Pharm. 72, 558–570 (1994).

    CAS  Article  Google Scholar 

  38. Chapman, C.E., Jiang, W. & Lamarre, Y. Modulation of lemniscal input during conditioned arm movements in the monkey. Exp. Brain Res. 72, 316–334 (1988).

    CAS  Article  Google Scholar 

  39. Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I. & Miyashita, Y. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699–703 (1999).

    CAS  Article  Google Scholar 

  40. Johnson, K.O. Sensory discrimination: neural processes preceding discrimination decision. J. Neurophysiol. 43, 1793–1815 (1980).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank W.T. Newsome for comments and discussions. R.R.'s research was partially supported by an International Research Scholars Award from the Howard Hughes Medical Institute and grants from Millenium Science Initiative-CONACT and DGAPA-UNAM. R.R. led the experiments and carried them out together with A.H., A.Z. and L.L.; C.B. and A.H. designed and carried out the data analysis; C.B. and R.R. co-wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranulfo Romo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Romo, R., Hernández, A., Zainos, A. et al. Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci 5, 1217–1225 (2002). https://doi.org/10.1038/nn950

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn950

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing