Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Memory enhancement: the search for mechanism-based drugs

Abstract

Rapid progress has been made in understanding the synaptic changes required for memory encoding. Several companies are now attempting to use information about the induction and consolidation phases of this process to build memory-enhancing drugs. These efforts have produced novel compounds that improve retention scores across a broad range of tests and species. Initial clinical results are encouraging. Issues now arise about appropriate applications of candidate drugs and optimal cellular targets for future development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targets for the development of memory-enhancing drugs.
Figure 2: Positive modulators of AMPA receptors.
Figure 3: Effects of a positive modulator on the recall of nonsense syllables by aged subjects.

Similar content being viewed by others

References

  1. Bliss, T.V.P. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 334–356 (1973).

    Google Scholar 

  2. Martin, S.J., Grimwood, P.D. & Morris, R.G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  Google Scholar 

  3. Duncan, C.P. The retroactive effect of electroshock on learning. J. Comp. Physiol. Psychol. 42, 32–44 (1949).

    Article  CAS  Google Scholar 

  4. Lynch, G. & Baudry, M. The biochemistry of memory: a new and specific hypothesis. Science 224, 1057–1063 (1984).

    Article  CAS  Google Scholar 

  5. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  6. Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F. & Huganir, R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  Google Scholar 

  7. Barrionuevo, G., Schottler, F. & Lynch, G. The effects of repetitive low frequency stimulation on control and “potentiated” synaptic responses in the hippocampus. Life Sci. 27, 2385–2391 (1980).

    Article  CAS  Google Scholar 

  8. Dityatev, A., Dityateva, G. & Schachner, M. Synaptic strength as a function of post- versus presynaptic expression of the neural cell adhesion molecule NCAM. Neuron 26, 207–217 (2000).

    Article  CAS  Google Scholar 

  9. Kramar, E.A., Bernard, J.A., Gall, C.M. & Lynch, G. Alpha3 integrin receptors contribute to the consolidation of long-term potentiation. Neuroscience 110, 29–39 (2002).

    Article  CAS  Google Scholar 

  10. Nguyen, P.V. & Kandel, E.R. A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J. Neurosci. 16, 3189–3198 (1996).

    Article  CAS  Google Scholar 

  11. Frey, U. & Morris, R.G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    Article  CAS  Google Scholar 

  12. Staubli, U., Rogers, G. & Lynch, G. Facilitation of glutamate receptors enhances memory. Proc. Natl. Acad. Sci. USA 91, 777–781 (1994).

    Article  CAS  Google Scholar 

  13. Arai, A., Kessler, M., Rogers, G. & Lynch, G. Effects of a memory-enhancing drug on DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents and synaptic transmission in hippocampus. J. Pharmacol. Exp. Ther. 278, 627–638 (1996).

    CAS  PubMed  Google Scholar 

  14. Hampson, R., Rogers, G., Lynch, G. & Deadwyler, S. Facilitative effects of the ampakine CX516 on short term memory in rats: correlations with hippocampal unit activity. J. Neurosci. 18, 2748–2763 (1998).

    Article  CAS  Google Scholar 

  15. Pirotte, B. et al. 4H-1,2,4-Pyridothiadiazine 1,1-dioxides and 2,3-dihydro-4H-1,2, 4-pyridothiadiazine 1,1-dioxides chemically related to diazoxide and cyclothiazide as powerful positive allosteric modulators of (R/S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionic acid receptors: design, synthesis, pharmacology, and structure-activity relationships. J. Med. Chem. 41, 2946–2959 (1998).

    Article  CAS  Google Scholar 

  16. Baumbarger, P.J., Muhlhauser, M., Zhai, J., Yang, C.R. & Nisenbaum, E.S. Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in prefrontal cortical pyramidal neurons by a novel allosteric potentiator. J. Pharmacol. Exp. Ther. 298, 86–102 (2001).

    CAS  PubMed  Google Scholar 

  17. Gates, M., Ogden, A. & Bleakman, D. Pharmacological effects of AMPA receptor potentiators LY392098 and LY404187 on rat neuronal AMPA receptors in vitro. Neuropharmacology 40, 984–991 (2001).

    Article  CAS  Google Scholar 

  18. Arai, A.C., Kessler, M., Rogers, G. & Lynch, G. Effects of the potent ampakine CX614 on hippocampal and recombinant AMPA receptors: interactions with cyclothiazide and GYKI 52466. Mol. Pharmacol. 58, 802–813 (2000).

    Article  CAS  Google Scholar 

  19. Arai, A. & Lynch, G. AMPA receptor desensitization modulates synaptic responses induced by repetitive afferent stimulation in hippocampal slices. Brain Res. 799, 235–242 (1998).

    Article  CAS  Google Scholar 

  20. Dash, P.K., Hochner, B. & Kandel, E.R. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345, 718–721 (1990).

    Article  CAS  Google Scholar 

  21. Barco, A., Alarcon, J.M. & Kandel, E.R. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689–703 (2002).

    Article  CAS  Google Scholar 

  22. Yin, J.C. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58 (1994).

    Article  CAS  Google Scholar 

  23. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    Article  CAS  Google Scholar 

  24. Kida, S. et al. CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348–355 (2002).

    Article  CAS  Google Scholar 

  25. Yin, J.C., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115 (1995).

    Article  CAS  Google Scholar 

  26. Josselyn, S.A. et al. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci. 21, 2404–2412 (2001).

    Article  CAS  Google Scholar 

  27. Nagakura, A., Niimura, M. & Takeo, S. Effects of a phosphodiesterase IV inhibitor rolipram on microsphere embolism-induced defects in memory function and cerebral cyclic AMP signal transduction system in rats. Br. J. Pharmacol. 135, 1783–1793 (2002).

    Article  CAS  Google Scholar 

  28. Zhu, J., Mix, E. & Winblad, B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug Rev. 7, 387–398 (2001).

    Article  CAS  Google Scholar 

  29. Lauterborn, J.C., Lynch, G., Vanderklish, P., Arai, A. & Gall, C.M. Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J. Neurosci. 20, 8–21 (2000).

    Article  CAS  Google Scholar 

  30. Mackowiak, M., O'Neill, M.J., Hicks, C.A., Bleakman, D. & Skolnick, P. An AMPA receptor potentiator modulates hippocampal expression of BDNF: an in vivo study. Neuropharmacology (in press)

  31. Ingvar, M. et al. Enhancement by an ampakine of memory encoding in humans. Exp. Neurol. 146, 553–559 (1997).

    Article  CAS  Google Scholar 

  32. Lynch, G. et al. Evidence that a positive modulator of AMPA-type glutamate receptors affects delayed recall in aged humans. Exp. Neurol. 145, 89–92 (1997).

    Article  CAS  Google Scholar 

  33. Gainetdinov, R.R., Mohn, A.R., Bohn, L.M. & Caron, M.G. Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter. Proc. Natl. Acad. Sci. USA 98, 11047–11054 (2001).

    Article  CAS  Google Scholar 

  34. Goff, D.C. et al. A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J. Clin. Psychopharmacol. 21, 484–487 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, G. Memory enhancement: the search for mechanism-based drugs. Nat Neurosci 5 (Suppl 11), 1035–1038 (2002). https://doi.org/10.1038/nn935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn935

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing