Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Where is 'where' in the human auditory cortex?

Abstract

We examine the functional characteristics of auditory cortical areas that are sensitive to spatial cues in the human brain, and determine whether they can be dissociated from parietal lobe mechanisms. Three positron emission tomography (PET) experiments were conducted using a speaker array permitting quasi free-field sound presentation within the scanner. Posterior auditory cortex responded to sounds that varied in their spatial distribution, but only when multiple complex stimuli were presented simultaneously, implicating this cortical system in disambiguation of overlapping auditory sources. We also found that the right inferior parietal cortex is specifically recruited in localization tasks, and that its activity predicts behavioral performance, consistent with its involvement in sensorimotor integration and spatial transformation. These findings clarify the functional roles of posterior auditory and parietal cortices, and help to reconcile competing models of auditory cortical organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods.
Figure 2: Neuroimaging results.
Figure 3: Behavioral results.

Similar content being viewed by others

References

  1. Rauschecker, J.P. & Tian, B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Nat. Acad. Sci. USA 97, 11800–11806 (2000).

    Article  CAS  Google Scholar 

  2. Ungerleider, L. & Haxby, J. “What” and “where” in the human brain. Curr. Biol. 4, 157–165 (1994).

    CAS  Google Scholar 

  3. Rauschecker, J.P., Tian, B., Pons, T. & Mishkin, M. Serial and parallel processing in Rhesus monkey auditory cortex. J. Comp. Neurol. 382, 89–103 (1997).

    Article  CAS  Google Scholar 

  4. Romanski, L. et al. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat. Neurosci. 2, 1131–1136 (1999).

    Article  CAS  Google Scholar 

  5. Rauschecker, J.P., Tian, B. & Hauser, M. Processing of complex sounds in the Macaque nonprimary auditory cortex. Science 268, 111–114 (1995).

    Article  CAS  Google Scholar 

  6. Recanzone, G.H., Guard, D.C., Phan, M.L. & Su, T.-I.K. Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the Macaque monkey. J. Neurophysiol. 83, 2723–2739 (2000).

    Article  CAS  Google Scholar 

  7. Tian, B., Reser, D., Durham, A., Kustov, A. & Rauschecker, J.P. Functional specialization in Rhesus monkey auditory cortex. Science 292, 290–293 (2001).

    Article  CAS  Google Scholar 

  8. Clarke, S., Bellman, A., Meuli, R., Assal, G. & Steck, A. Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways. Neuropsychologia 38, 797–807 (2000).

    Article  CAS  Google Scholar 

  9. Middlebrooks, J.C., Clock, A.E., Xu, L. & Green, D.M. A panoramic code for sound location by cortical neurons. Science 264, 842–844 (1994).

    Article  CAS  Google Scholar 

  10. Furukawa, S., Xu, L. & Middlebrooks, J.C. Coding of sound-source location by ensembles of cortical neurons. J. Neurosci. 20, 1216–1228 (2000).

    Article  CAS  Google Scholar 

  11. Brugge, J., Reale, R., Jenison, R. & Schnupp, J.W.H. Auditory cortical spatial receptive fields. Audiol. Neurootol. 6, 173–177 (2001).

    Article  CAS  Google Scholar 

  12. Cohen, Y.E. & Wessinger, C.M. Who goes there? Neuron 24, 769–771 (1999).

    Article  CAS  Google Scholar 

  13. Belin, P. & Zatorre, R.J. What, where and how in auditory cortex. Nat. Neurosci. 3, 965–966 (2000).

    Article  CAS  Google Scholar 

  14. Griffiths, T.D., Green, G.G.R., Rees, A. & Rees, G. Human brain areas involved in the analysis of auditory movement. Hum. Brain Mapp. 9, 72–80 (2000).

    Article  CAS  Google Scholar 

  15. Bushara, K. et al. Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat. Neurosci. 2, 759–766 (1999).

    Article  CAS  Google Scholar 

  16. Weeks, R. et al. A positron emission tomographic study of auditory localization in the congenitally blind. J. Neurosci. 20, 2664–2672 (2000).

    Article  CAS  Google Scholar 

  17. Alain, C., Arnott, S.R., Hevenor, S., Graham, S. & Grady, C.L. “What” and “where” in the human auditory system. Proc. Nat. Acad. Sci. USA 98, 12301–12306 (2001).

    Article  CAS  Google Scholar 

  18. Maeder, P. et al. Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14, 802–816 (2001).

    Article  CAS  Google Scholar 

  19. Zatorre, R.J., Mondor, T.A. & Evans, A.C. Functional activation of right parietal and frontal cortex during auditory attention to space and frequency. Neuroimage 10, 544–554 (1999).

    Article  CAS  Google Scholar 

  20. Andersen, R.A. Encoding of intention and spatial location in the posterior parietal cortex. Cereb. Cortex 5, 457–469 (1995).

    Article  CAS  Google Scholar 

  21. Wightman, F.L. & Kistler, D.J. Headphone simulation of free-field listening: II. Psychophysical validation. J. Acoust. Soc. Am. 85, 868–878 (1989).

    Article  CAS  Google Scholar 

  22. Middlebrooks, J. Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. J. Acoust. Soc. Am. 106, 1493–1510 (1999).

    Article  CAS  Google Scholar 

  23. Mrsic-Flogel, T.D., King, A.J., Jenison, R.L. & Schnupp, J.W.H. Listening through different ears alters spatial response fields in ferret primary auditory cortex. J. Neurophysiol. 86, 1043–1046 (2001).

    Article  CAS  Google Scholar 

  24. Grill-Spector, K. & Malach, R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. 107, 293–321 (2001).

    Article  CAS  Google Scholar 

  25. Penhune, V.B., Zatorre, R.J., MacDonald, J.D. & Evans, A.C. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb. Cortex 6, 661–672 (1996).

    Article  CAS  Google Scholar 

  26. Westbury, C.F., Zatorre, R.J. & Evans, A.C. Quantifying variability in the planum temporale: a probability map. Cereb. Cortex 9, 392–405 (1999).

    Article  CAS  Google Scholar 

  27. Galaburda, A.M. & Sanides, F. Cytoarchitectonic organization of the human auditory cortex. J. Comp. Neurol. 190, 597–610 (1980).

    Article  CAS  Google Scholar 

  28. Mesulam, M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Phil. Transac. Roy. Soc. Lon. 354, 1325–1346 (1999).

    Article  CAS  Google Scholar 

  29. Zatorre, R.J. & Penhune, V.B. Spatial localization after excision of human auditory cortex. J. Neurosci. 21, 6321–6328 (2001).

    Article  CAS  Google Scholar 

  30. Thivard, L., Belin, P., Zilbovicius, M., Poline, J. & Samson, Y. A cortical region sensitive to auditory spectral motion. Neuroreport 11, 2969–2972 (2000).

    Article  CAS  Google Scholar 

  31. Warren, J., Zielinski, B., Green, G., Rauschecker, J. & Griffiths, T. Analysis of sound source motion by the human brain. Neuron 34, 139–148 (2002).

    Article  CAS  Google Scholar 

  32. Sereno, A. & Maunsell, J. Shape selectivity in primate lateral intraparietal cortex. Nature 395, 500–503 (1998).

    Article  CAS  Google Scholar 

  33. Mondor, T.A., Zatorre, R.J. & Terrio, N.A. Constraints on the selection of auditory information. J. Exp. Psychol. Hum. Percept. Perform. 24, 66–79 (1998).

    Article  Google Scholar 

  34. Bregman, A. Auditory Scene Analysis (MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  35. Baumgart, F., Gaschler-Markefski, B., Woldorff, M., Heinze, H.-J. & Scheich, H. A movement-sensitive area in auditory cortex. Nature 400, 724–725 (1999).

    Article  CAS  Google Scholar 

  36. Efron, R., Crandall, P., Koss, B., Divenyi, P. & Yund, E. Central auditory processing III. The “cocktail party” effect and anterior temporal lobectomy. Brain Lang. 19, 254–263 (1983).

    Article  CAS  Google Scholar 

  37. Lewis, J. & Van Essen, D. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  Google Scholar 

  38. Whitfield, I. in Cerebral Cortex. (eds. Peters, A. & Jones, E.) 329–351 (Plenum, New York, 1985).

    Google Scholar 

  39. Griffiths, T.D. et al. Right parietal cortex is involved in the perception of sound movement in humans. Nat. Neurosci. 1, 74–79 (1998).

    Article  CAS  Google Scholar 

  40. Brungart, D.S. & Rabinowitz, W.M. Auditory localization of nearby sources. Head-related transfer functions. J. Acoust. Soc. Am. 106, 1465–1479 (1999).

    Article  CAS  Google Scholar 

  41. Brungart, D.S., Durlach, N.I. & Rabinowitz, W.M. Auditory localization of nearby sources. II. Localization of a broadband source. J. Acoust. Soc. Am. 106, 1956–1968 (1999).

    Article  CAS  Google Scholar 

  42. Worsley, K., Evans, A., Marrett, S. & Neelin, P. A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12, 900–918 (1992).

    Article  CAS  Google Scholar 

  43. Paus, T., Perry, D., Zatorre, R., Worsley, K. & Evans, A. Modulation of cerebral blood-flow in the human auditory cortex during speech: role of motor-to-sensory discharges. Eur. J. Neurosci. 8, 2236–2246 (1996).

    Article  CAS  Google Scholar 

  44. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme Medical, New York, 1988).

    Google Scholar 

Download references

Acknowledgements

This work was supported by operating grants from the Canadian Institutes of Health Research and the McDonnell-Pew Cognitive Neuroscience Program. We thank A.C. Evans, B. Pike and the staff of the McConnell Brain Imaging Centre for their assistance, and J. Rauschecker for comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Zatorre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zatorre, R., Bouffard, M., Ahad, P. et al. Where is 'where' in the human auditory cortex?. Nat Neurosci 5, 905–909 (2002). https://doi.org/10.1038/nn904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing