Self-inhibition of olfactory bulb neurons

Abstract

The GABA (γ-aminobutyric-acid)-containing periglomerular (PG) cells provide the first level of inhibition to mitral and tufted (M/T) cells, the output neurons of the olfactory bulb. We find that stimulation of PG cells of the rat olfactory bulb results in self-inhibition: release of GABA from an individual PG cell activates GABAA receptors on the same neuron. PG cells normally contain high concentrations of intracellular chloride and consequently are depolarized by GABA. Despite this, GABA inhibits PG cell firing by shunting excitatory signals. Finally, GABA released during self-inhibition may spill over to neighboring PG cells, resulting in a lateral spread of inhibition. Given the gatekeeping role of PG cells in the olfactory network, GABA-mediated self-inhibition will favor M/T cell excitation during intense sensory stimulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Voltage steps evoke GABA receptor–mediated responses in PG cells.
Figure 2: Self-inhibition requires calcium influx and intracellular GABA.
Figure 3: The reversal potential for GABA-induced currents is depolarized from the resting potential.
Figure 4: GABA is depolarizing yet inhibitory.
Figure 5: PG cells show self-inhibition responses with physiological intracellular chloride.
Figure 6: GABA spillover in the olfactory bulb.

References

  1. 1

    Shepherd, G.M. & Greer, C.A. The olfactory bulb. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 159–203 (Oxford Univ. Press, New York, 1998).

  2. 2

    Mori, K., Nagao, H. & Yoshihara, Y. The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999).

  3. 3

    Rall, W., Shepherd, G.M., Reese, T.S. & Brightman, M.W. Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp. Neurol. 14, 44–56 (1966).

  4. 4

    Nicoll, R.A. Inhibitory mechanisms in the rabbit olfactory bulb: dendrodendritic mechanisms. Brain Res. 14, 157–172 (1969).

  5. 5

    Price, J.L. & Powell, T.P.S. The synaptology of the granule cells of the olfactory bulb. J. Cell Sci. 7, 125–155 (1970).

  6. 6

    Jahr, C.E. & Nicoll, R.A. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J. Physiol. 326, 213–234 (1982).

  7. 7

    Isaacson, J.S. & Strowbridge, B.W. Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20, 749–761 (1998).

  8. 8

    Schoppa, N.E., Kinzie, J.M., Shara, Y., Segerson, T.P. & Westbrook, G.L. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. J. Neurosci. 18, 6790–6802 (1998).

  9. 9

    Ribak, C.E., Vaughn, J.E., Saito, K., Barber, R. & Roberts, E. Glutamate decarboxylase localization in neurons of the olfactory bulb. Brain Res. 126, 1–18 (1977).

  10. 10

    Kosaka, K., Toida, K., Aika, Y. & Kosaka, T. How simple is the organization of the olfactory glomerulus?: the heterogeneity of so-called periglomerular cells. Neurosci. Res. 30, 101–110 (1998).

  11. 11

    Pinching, A.J. & Powell, T.P.S. The neuron types of the glomerular layer of the olfactory bulb. J. Cell Sci. 9, 305–345 (1971).

  12. 12

    Pinching, A.J. & Powell, T.P.S. The neuropil of the glomeruli of the olfactory bulb. J. Cell Sci. 9, 347–377 (1971).

  13. 13

    Kasowski, H.J., Kim, H. & Greer, C.A. Compartmental organization of the olfactory bulb glomerulus. J. Comp. Neurol. 407, 261–274 (1999).

  14. 14

    Nicoll, R.A. & Jahr, C.E. Self-excitation of olfactory bulb neurones. Nature 296, 441–444 (1982).

  15. 15

    Isaacson, J.S. Glutamate spillover mediates excitatory transmission in the rat olfactory bulb. Neuron 23, 377–384 (1999).

  16. 16

    Friedman, D. & Strowbridge, B.W. Functional role of NMDA autoreceptors in olfactory mitral cells. J. Neurophysiol. 84, 39–50 (2000).

  17. 17

    Christie, J.M., Schoppa, N.E. & Westbrook, G.L. Tufted cell dendrodendritic inhibition in the olfactory bulb is dependent on NMDA receptor activity. J. Neurophysiol. 85, 169–173 (2001).

  18. 18

    Laurie, D.J., Seeburg, P.H. & Wisden, W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J. Neurosci. 12, 1063–1076 (1992).

  19. 19

    Fritschy, J.M. & Mohler, H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359, 154–194 (1995).

  20. 20

    Salin, P.-A., Lledo, P.-M., Vincent, J.-D. & Charpak, S. Dendritic glutamate autoreceptors modulate signal processing in rat mitral cells. J. Neurophysiol. 85, 1275–1282 (2001).

  21. 21

    McIntire, S.L., Reimer, R.J., Schuske, K., Edwards, R.H. & Jorgensen, E.M. Identification and characterization of the vesicular GABA transporter. Nature 389, 870–876 (1997).

  22. 22

    Burger, P.M. et al. GABA and glycine in synaptic vesicles: storage and transport characteristics. Neuron 7, 287–293 (1991).

  23. 23

    Traynelis, S.F., Silver, R.A. & Cull-Candy, S.G. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 11, 279–289 (1993).

  24. 24

    Kyrozis, A. & Reichling, D.B. Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration. J. Neurosci. Methods 57, 27–35 (1995).

  25. 25

    Wellis, D.P. & Scott, J.W. Intracellular responses of identified rat olfactory bulb interneurons to electrical and odor stimulation. J. Neurophysiol. 64, 932–947 (1990).

  26. 26

    Jahr, C.E. & Nicoll, R.A. Noradrenergic modulation of dendrodendritic inhibition in the olfactory bulb. Nature 297, 227–229 (1982).

  27. 27

    Pinching, A.J. & Powell, T.P.S. The neuropil of the periglomerular region of the olfactory bulb. J. Cell Sci. 9, 379–409 (1971).

  28. 28

    Puopolo, M. & Belluzzi, O. Functional heterogeneity of periglomerular cells in the rat olfactory bulb. Eur. J. Neurosci. 10, 1073–1083 (1998).

  29. 29

    Shepherd, G.M. Neuronal systems controlling mitral cell excitability. J. Physiol. (Lond.) 168, 101–117 (1963).

  30. 30

    Schneider, S.P. & Scott, J.W. Orthodromic response properties of rat olfactory bulb mitral and tufted cells correlate with their projection patterns. J. Neurophysiol. 50, 358–378 (1983).

  31. 31

    McQuiston, A.R. & Katz, L.C. Electrophysiology of interneurons in the glomerular layer of the rat olfactory bulb. J. Neurophysiol. 86, 1899–1907 (2001).

  32. 32

    Chen, W.R., Xiong, W. & Shepherd, G.M. Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses. Neuron 25, 625–633 (2000).

  33. 33

    Halabisky, B., Friedman, D., Radojicic, M. & Strowbridge, B.W. Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells. J. Neurosci. 20, 5124–5134 (2000).

  34. 34

    Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. (Lond.) 531, 807–826 (2001).

  35. 35

    Pouzat, C. & Marty, A. Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket cells. J. Neurosci. 19, 1675–1690 (1999).

  36. 36

    Segal, M.M. & Furshpan, E.J. Epileptiform activity in microcultures containing small numbers of hippocampal neurons. J. Neurophysiol. 64, 1390–1399 (1990).

  37. 37

    White, E.L. Synaptic organization in the olfactory glomerulus of the mouse. Brain Res. 37, 69–80 (1972).

  38. 38

    Lu, T. & Trussell, L.O. Mixed excitatory and inhibitory GABA-mediated transmission in chick cochlear nucleus. J. Physiol. (Lond.) 535, 125–131 (2001).

  39. 39

    Siklos, L., Rickmann, M., Joo, F., Freeman, W.J. & Wolff, J.R. Chloride is preferentially accumulated in a subpopulation of dendrites and periglomerular cells of the main olfactory bulb in adult rats. Neuroscience 64, 165–172 (1995).

  40. 40

    Staley, K.J. & Mody, I. Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABA-A receptor-mediated postsynaptic conductance. J. Neurophysiol. 68, 197–212 (1992).

  41. 41

    Zhang, S.J. & Jackson, M.B. GABAA receptor activation and the excitability of nerve terminals in the rat posterior pituitary. J. Physiol. (Lond.) 483, 583–595 (1995).

  42. 42

    Eccles, J.C., Magni, F. & Willis, W.D. Depolarization of central terminals of group 1a afferent fibres from muscle. J. Physiol. (Lond.) 160, 532–540 (1962).

  43. 43

    Nicoll, R.A. Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog. J. Physiol. (Lond.) 290, 113–127 (1979).

  44. 44

    Aroniadou-Anderjaska, V., Zhou, F.M., Priest, C.A., Ennis, M. & Shipley, M.T. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABAB heteroreceptors. J. Neurophysiol. 84, 1194–1203 (2000).

Download references

Acknowledgements

The authors thank members of the Jahr lab for suggestions. This work was supported by the National Institutes of Health, F32 NS11093 (T.C.S.) and NS21419 (C.E.J.).

Author information

Correspondence to Craig E. Jahr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, T., Jahr, C. Self-inhibition of olfactory bulb neurons. Nat Neurosci 5, 760–766 (2002). https://doi.org/10.1038/nn882

Download citation

Further reading