Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional orientation tuning in macaque area V4

Abstract

Tuning for the orientation of elongated, linear image elements (edges, bars, gratings), first discovered by Hubel and Wiesel, is considered a key feature of visual processing in the brain. It has been studied extensively in two dimensions (2D) using frontoparallel stimuli, but in real life most lines, edges and contours are slanted with respect to the viewer. Here we report that neurons in macaque area V4, an intermediate stage in the ventral (object-related) pathway of visual cortex, were tuned for 3D orientation—that is, for specific slants as well as for 2D orientation. The tuning for 3D orientation was consistent across depth position (binocular disparity) and position within the 2D classical receptive field. The existence of 3D orientation signals in the ventral pathway suggests that the brain may use such information to interpret 3D shape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 3D orientation tuning of a representative V4 neuron.
Figure 2: 3D orientation-tuning examples.
Figure 3: Raster plot of individual-trial responses for the Fig. 2c example cell.
Figure 4: Population results.

Similar content being viewed by others

References

  1. Desimone, R. & Schein, S.J. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J. Neurophysiol. 57, 835–868 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Gross, C.G., Rocha-Miranda, C.E. & Bender, D.B. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96–111 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Hubel, D.H. & Wiesel, T.N. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. (Lond.) 148, 574–591 (1959).

    Article  CAS  Google Scholar 

  4. Hubel, D.H. & Wiesel, T.N. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).

    Article  CAS  PubMed  Google Scholar 

  5. Hubel, D.H. & Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  6. Biederman, I. Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94, 115–147 (1987).

    Article  PubMed  Google Scholar 

  7. Dickinson, S.J., Pentland, A.P. & Rosenfeld, A. From volumes to views: an approach to 3D object recognition. CVGIP: Image Understanding 55, 130–154 (1992).

    Article  Google Scholar 

  8. Marr, D. & Nishihara, H.K. Representation and recognition of the spatial organization of three-dimensional shapes. Proc. R. Soc. Lond. B Biol. Sci. 200, 269–294 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS  PubMed  Google Scholar 

  11. Manly, B.F.J. Randomization and Monte Carlo Methods in Biology 114–118 (Chapman & Hall, London, 1991).

    Book  Google Scholar 

  12. Hanazawa, A. & Komatsu, H. Influence of the direction of elemental luminance gradients on the responses of V4 cells to textured surfaces. J. Neurosci. 21, 4490–4497 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mardia, K.V. & Jupp, P.E. Directional Statistics 248–249 (Wiley, Chichester, 2000).

    Google Scholar 

  14. Anzai, A., Ohzawa, I. & Freeman, R.D. Neural mechanisms for processing binocular information: complex cells. J. Neurophysiol. 82, 909–924 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Janssen, P., Vogels, R. & Orban, G.A. Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. Proc. Natl. Acad. Sci. USA 96, 8217–8222 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Janssen, P., Vogels, R. & Orban, G.A. Three-dimensional shape coding in inferior temporal cortex. Neuron 27, 385–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Janssen, P., Vogels, R. & Orban, G.A. Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. Science 288, 2054–2056 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Janssen, P., Vogels, R., Liu, Y. & Orban, G.A. Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces. J. Neurosci. 21, 9419–9429 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dobbins, A.C., Jeo, R.M., Fiser, J. & Allman, J.M. Distance modulation of neural activity in the visual cortex. Science 281, 552–555 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Hinkle, D.A. & Connor, C.E. Disparity tuning in macaque area V4. Neuroreport 12, 365–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Watanabe, M., Tanaka, H., Uka, T. & Fujita, I. Disparity-selective neurons in area V4 of macaque monkeys. J. Neurophysiol. 87, 1960–1973 (2002).

    Article  PubMed  Google Scholar 

  22. Uka, T., Tanaka, H., Yoshiyama, K., Kato, M. & Fujita, I. Disparity selectivity of neurons in monkey inferior temporal cortex. J. Neurophysiol. 84, 120–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Poggio, T. & Edelman, S. A network that learns to recognize three-dimensional objects. Nature 343, 263–266 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Tarr, M.J. & Pinker, S. Mental rotation and orientation-dependence in shape recognition. Cognit. Psychol. 21, 233–282 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Vetter, T., Hurlbert, A. & Poggio, T. View-based models of 3D object recognition: invariance to imaging transformations. Cereb. Cortex 5, 261–269 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Barlow, H.B., Blakemore, C. & Pettigrew, J.D. The neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 193, 327–342 (1967).

    Article  CAS  Google Scholar 

  27. Hubel, D.H. & Wiesel, T.N. Stereoscopic vision in macaque monkey: cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature 225, 41–42 (1970).

    Article  CAS  PubMed  Google Scholar 

  28. Poggio, G.F. & Fischer, B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J. Neurophysiol. 40, 1392–1405 (1977).

    Article  CAS  PubMed  Google Scholar 

  29. Blakemore, C., Fiorentini, A. & Maffei, L. A second neural mechanism of binocular depth discrimination. J. Physiol. 226, 725–749 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nelson, J.I., Kato, H. & Bishop, P.O. Discrimination of orientation and position disparities by binocularly activated neurons in cat striate cortex. J. Neurophysiol. 40, 260–283 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Wieniawa-Narkiewicz, E., Wimborne, B.M., Michalski, A. & Henry, G.H. Area 21a in the cat and the detection of binocular orientation disparity. Ophthalmic Physiol. Opt. 12, 269–272 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. von der Heydt R., Hanny, P., Dursteler, M.R. & Poggio, G.F. Neuronal responses to stereoscopic tilt in the visual cortex of the behaving monkey. Invest. Ophthalmol. Vis. Sci. 22 (Suppl.), 12–14 (1982).

    Google Scholar 

  33. Bridge, H. & Cumming, B.G. Responses of macaque V1 neurons to binocular orientation differences. J. Neurosci. 21, 7293–7302 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shikata, E., Tanaka, Y., Nakamura, H., Taira, M. & Sakata, H. Selectivity of the parietal visual neurones in 3D orientation of surface of stereoscopic stimuli. Neuroreport 7, 2389–2394 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Taira, M., Tsutsui, K.I., Jiang, M., Yara, K. & Sakata, H. Parietal neurons represent surface orientation from the gradient of binocular disparity. J. Neurophysiol. 83, 3140–3146 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Maunsell, J.H. & Van Essen, D.C. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J. Neurophysiol. 49, 1148–1167 (1983).

    Article  CAS  PubMed  Google Scholar 

  37. Roy, J.P., Komatsu, H. & Wurtz, R.H. Disparity sensitivity of neurons in monkey extrastriate area MST. J. Neurosci. 12, 2478–2492 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bradley, D.C. & Andersen, R.A. Center-surround antagonism based on disparity in primate area MT. J. Neurosci. 18, 7552–7565 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bradley, D.C., Chang, G.C. & Andersen, R.A. Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature 392, 714–717 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. DeAngelis, G.C., Cumming, B.G. & Newsome, W.T. Cortical area MT and the perception of stereoscopic depth. Nature 394, 677–680 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Cagenello, R. & Rogers, B.J. Anisotropies in the perception of stereoscopic surfaces: the role of orientation disparity. Vision Res. 33, 2189–2201 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Ernst, M.O., Banks, M.S. & Bulthoff, H.H. Touch can change visual slant perception. Nat. Neurosci. 3, 69–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Gillam, B. & Ryan, C. Perspective, orientation disparity and anisotropy in stereoscopic slant perception. Perception 21, 427–439 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Mitchison, G.J. & McKee, S.P. Mechanisms underlying the anisotropy of stereoscopic tilt perception. Vision Res. 30, 1781–1791 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Ninio, J. Orientational versus horizontal disparity in the stereoscopic appreciation of slant. Perception 14, 305–314 (1985).

    Article  CAS  PubMed  Google Scholar 

  46. Robinson, D.A. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Bio-Med. Electron. 10, 137–145 (1963).

    Article  CAS  Google Scholar 

  47. Pasupathy, A. & Connor, C.E. Shape representation in area V4: position-specific tuning for boundary conformation. J. Neurophysiol. 86, 2505–2519 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Gattass, R., Sousa, A.P. & Gross, C.G. Visuotopic organization and extent of V3 and V4 of the macaque. J. Neurosci. 8, 1831–1845 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pasupathy, A. & Connor, C.E. Responses to contour features in macaque area V4. J. Neurophysiol. 82, 2490–2502 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S.L. Brincat, G.F. Poggio and R. von der Heydt for comments on the manuscript. Some analyses were suggested by B.G. Cumming. Technical support was provided by W. Nash, W. Quinlan and B. Sorenson. This work was supported by the National Institute of Neurological Disorders and Stroke and by the Pew Scholars Program in the Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Connor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinkle, D., Connor, C. Three-dimensional orientation tuning in macaque area V4. Nat Neurosci 5, 665–670 (2002). https://doi.org/10.1038/nn875

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn875

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing