Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ca2+-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons

Abstract

We have investigated the Ca2+ dependence of vesicular secretion from the soma of dorsal root ganglion (DRG) neurons, which secrete neuropeptides by exocytosis of dense-core vesicles. In patch-clamped somata of rat DRG neurons, we found a depolarization-induced membrane capacitance increase (ΔCm) in the absence of extracellular Ca2+ and in the presence of a Ca2+ chelator (BAPTA) in the intracellular solution. Depletion of internal Ca2+ stores by thapsigargin in the Ca2+-free bath also did not block the ΔCm, indicating that Ca2+ release from internal Ca2+ stores may not have been involved. Furthermore, the Ca2+-independent ΔCm was blocked by whole-cell dialysis with tetanus toxin and was accompanied by pulsatile secretion of false transmitters, as detected by amperometric measurements. These results indicate the existence of Ca2+-independent but voltage-dependent vesicular secretion (CIVDS) in a mammalian sensory neuron.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depolarization-induced capacitance changes in DRG and adrenal chromaffin cells in Ca2+-containing and Ca2+-free baths.
Figure 2: Depolarization-induced ΔCm in the absence of Ca2+ influx in DRG cells.
Figure 3: Combined Cm and [Ca2+]i measurements showed that depolarization induced a ΔCm without a detectable change in [Ca2+]i.
Figure 4: Intracellular Ca2+ microdomains were not involved in depolarization-induced Ca2+-independent ΔCm.
Figure 5: Tetanus toxin (TeNT) blocked depolarization-induced ΔCm in a Ca2+-free bath.
Figure 6: Amperometric detection of depolarization-induced quantal release of false transmitter in a Ca2+-free bath.
Figure 7: Properties of CIVDS.
Figure 8: Comparison of two components of voltage-dependent secretion, CDS and CIVDS, in the same DRG neurons.

Similar content being viewed by others

References

  1. Katz, B. The Release of Neural Transmitter Substances (Thomas, Springfield, Illinois, 1969).

    Google Scholar 

  2. Zhang, X., Aman, K. & Hokfelt, T. Secretory pathways of neuropeptides in rat lumbar dorsal root ganglion neurons and effects of peripheral axotomy. J. Comp. Neurol. 352, 481–500 (1995).

    Article  CAS  Google Scholar 

  3. Huang, L. Y. & Neher, E. Ca2+-dependent exocytosis in the somata of dorsal root ganglion neurons. Neuron 17, 135–145 (1996).

    Article  CAS  Google Scholar 

  4. Zhou, Z. & Misler, S. Action potential-induced quantal secretion of catecholamines from rat adrenal chromaffin cells. J. Biol. Chem. 270, 3498–3505 (1995).

    Article  CAS  Google Scholar 

  5. Chow, R. H., Klingauf, J., Heinemann, C., Zucker, R. S. & Neher, E. Mechanisms determining the time course of secretion in neuroendocrine cells. Neuron 16, 369–376 (1996).

    Article  CAS  Google Scholar 

  6. Bers, D. M. Excitation-Contraction Coupling and Cardiac Contractile Force (Kluwer Academic Publishers, Dordrecht, 1991).

    Google Scholar 

  7. Neher, E. Concentration profiles of intracellular calcium in the presence of a diffusible chelator. Exp. Brain Res. 14, 80–96 (1986).

    CAS  Google Scholar 

  8. Mosar, T. & Beutner, D. Kinetics of exocytosis and endocytosis of the cochlear inner hair cell afferent synapse of the mouse. Proc. Natl. Acad. Sci. USA 97, 883–888 (2000).

    Article  Google Scholar 

  9. Sun, J. Y. & Wu, L. G. Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 30, 171–182 (2001).

    Article  CAS  Google Scholar 

  10. Xu, T., Binz, T., Niemann, H. & Neher, E. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat. Neurosci. 1, 192–200 (1998).

    Article  CAS  Google Scholar 

  11. Horrigan, F. T. & Bookman, R. J. Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13, 1119–1129 (1994).

    Article  CAS  Google Scholar 

  12. Wightman, R. M. et al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc. Natl. Acad. Sci. USA 88, 10754–10758 (1991).

    Article  CAS  Google Scholar 

  13. Jaffe, E. H., Marty, A., Schulte, A. & Chow, R. H. Extrasynaptic vesicular transmitter release from the somata of substantia nigra neurons in rat midbrain slices. J. Neurosci. 18, 3548–3553 (1998).

    Article  CAS  Google Scholar 

  14. Puopolo, M., Hochstetler, S. E., Gustincich, S., Wightman, R. M. & Raviola, E. Extrasynaptic release of dopamine in a retinal neuron: activity dependence and transmitter modulation. Neuron 30, 211–225 (2001).

    Article  CAS  Google Scholar 

  15. Zhou, Z. & Misler, S. Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons. Proc. Natl. Acad. Sci. USA 92, 6938–6942 (1995).

    Article  CAS  Google Scholar 

  16. Zhou, Z. & Misler, S. Amperometric detection of quantal secretion from patch-clamped rat pancreatic beta cells. J. Biol. Chem. 271, 270–277 (1996).

    Article  CAS  Google Scholar 

  17. Kim, K. T., Koh, D. S. & Hille, B. Loading of oxidizable transmitters into secretory vesicles permits carbon-fiber amperometry. J. Neurosci. 20, RC101 (2000).

  18. Gillis, K. D., Mossner, R. & Neher, E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16, 1209–1220 (1996).

    Article  CAS  Google Scholar 

  19. Matthews, G. Neurotransmitter release. Annu. Rev. Neurosci. 19, 219–233 (1996).

    Article  CAS  Google Scholar 

  20. Smith, C., Moser, T., Xu, T. & Neher, E. Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 20, 1243–1253 (1998).

    Article  CAS  Google Scholar 

  21. Mulkey, R. M. & Zucker, R. S. Action potentials must admit calcium to evoke transmitter release. Nature 350, 153–155 (1991).

    Article  CAS  Google Scholar 

  22. Parnas, H., Segel, L., Dudel, J. & Parnas, I. Auto receptors, membrane potential and the regulation of transmitter release. Trends Neurosci. 23, 60–68 (2000).

    Article  CAS  Google Scholar 

  23. Hu, H. Z. & Li, Z. W. Modulation by adenosine of GABA-activated current in rat dorsal root ganglion neurons. J. Physiol. 501, 67–75 (1997).

    Article  CAS  Google Scholar 

  24. Xu, G. Y., Huang, L. Y. & Zhao, Z. Q. Activation of silent mechanoreceptive cat C and A δ sensory neurons and their substance P expression following peripheral inflammation. J. Physiol. 528, 339–348 (2000).

    Article  CAS  Google Scholar 

  25. Ding, J. P., Li, Z. W. & Lingle, C. J. Inactivating BK channels in rat chromaffin cells may arise from heteromultimeric assembly of distinct inactivation-competent and noninactivating subunits. Biophys. J. 74, 268–289 (1998).

    Article  CAS  Google Scholar 

  26. Gillis, K. D. Techniques for membrane capacitance measurements. in Single Channel Recording 2nd edn. (eds. Sakmann, B. & Neher, E.) 155–198 (Plenum, New York, 1995).

    Chapter  Google Scholar 

  27. Zhou, Z. & Neher, E. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J. Physiol. 469, 245–273 (1993).

    Article  CAS  Google Scholar 

  28. You, Z. D., Li, J. H., Song, C. Y., Wang, C. H. & Lu, C. L. Chronic morphine treatment inhibits oxytocin synthesis in rats. Neuroreport 11, 3113–3116 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L.C. Wang and W. Xiong for cell preparations and help with some experiments; Z.D. You for CGRP radioimmunoassay; T. Xu for advice and the gift of TeNT; and M.M. Poo, E. Neher, R.H. Chow and Y.Z. Wang for helpful comments on the manuscript. This work was supported by grants from Major State Basic Research Program of P.R. China (G2000077800), National Natural Science Foundation of China (39525009, 39970238, 39970371), Chinese Academy of Sciences and The Li Foundation (San Francisco).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuan Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Zhou, Z. Ca2+-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. Nat Neurosci 5, 425–430 (2002). https://doi.org/10.1038/nn845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing