Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming

Abstract

We conducted two event-related functional magnetic resonance imaging (fMRI) experiments to investigate the neural substrates of visual object recognition in humans. We used a repetition-priming method with visual stimuli recurring at unpredictable intervals, either with the same appearance or with changes in size, viewpoint or exemplar. Lateral occipital and posterior inferior temporal cortex showed lower activity for repetitions of both real and non-sense objects; fusiform and left inferior frontal regions showed decreases for repetitions of only real objects. Repetition of different exemplars with the same name affected only the left inferior frontal cortex. Crucially, priming-induced decreases in activity of the right fusiform cortex depended on whether the three-dimensional objects were repeated with the same viewpoint, regardless of whether retinal image size changed; left fusiform decreases were independent of both viewpoint and size. These data show that dissociable subsystems in ventral visual cortex maintain distinct view-dependent and view-invariant object representations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Examples of stimuli and schematic illustration of experimental design.
Figure 2: Repetition priming effects in experiment 1.
Figure 3: Repetition priming effects in experiment 2.
Figure 4: Retinotopic effects were due to object size (group results, P〉0.001).
Figure 5: Summary of main activation foci in experiments 1 and 2 (group results, P〉0.001).

References

  1. Biederman, I. Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94, 115–147 (1987).

    Article  Google Scholar 

  2. Biederman, I. & Gerhardstein, P.C. Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. J. Exp. Psychol. Hum. Percept. Perform. 19, 1162–1182 (1993).

    CAS  Article  Google Scholar 

  3. Bulthoff, H.H., Edelman, S.Y. & Tarr, M.J. How are three-dimensional objects represented in the brain? Cereb. Cortex 5, 247–260 (1995).

    CAS  Article  Google Scholar 

  4. Tarr, M.J. & Bulthoff, H.H. Image-based object recognition in man, monkey and machine. Cognition 67, 1–20 (1998).

    CAS  Article  Google Scholar 

  5. Wallis, G. & Bulthoff, H. Learning to recognize objects. Trends Cogn. Sci. 3, 22–31 (1999).

    CAS  Article  Google Scholar 

  6. Marr, D. Vision (W. H. Freeman, San Francisco, 1982).

    Google Scholar 

  7. Tarr, M.J., Williams, P., Hayward, W.G. & Gauthier, I. Three-dimensional object recognition is viewpoint dependent. Nat. Neurosci. 1, 275–277 (1998).

    CAS  Article  Google Scholar 

  8. Ellis, R., Allport, D.A., Humphreys, G.W. & Collis, J. Varieties of object constancy. Q. J. Exp. Psychol. A 41, 775–796 (1989).

    CAS  Article  Google Scholar 

  9. Biederman, I. & Bar, M. One-shot viewpoint invariance in matching novel objects. Vision Res. 39, 2885–2899 (1999).

    CAS  Article  Google Scholar 

  10. Warrington, E.K. & Taylor, A.M. Two categorical stages of object recognition. Perception 7, 695–705 (1978).

    CAS  Article  Google Scholar 

  11. Grüsser, O.J. & Landis, T. Visual agnosia and other disturbances of visual perception and cognition(ed. Cronly-Dillon, J. R.) (MacMillan, London, 1991).

    Google Scholar 

  12. Turnbull, O.H., Carey, D.P. & McCarthy, R.A. The neuropsychology of object constancy. J. Int. Neuropsychol. Soc. 3, 288–298 (1997).

    CAS  PubMed  Google Scholar 

  13. Lueschow, A., Miller, E.K. & Desimone, R. Inferior temporal mechanisms for invariant object recognition. Cereb. Cortex 4, 523–531 (1994).

    CAS  Article  Google Scholar 

  14. Booth, M.C. & Rolls, E.T. View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cereb. Cortex 8, 510–523 (1998).

    CAS  Article  Google Scholar 

  15. Logothetis, N.K., Pauls, J., Bulthoff, H.H. & Poggio, T. View-dependent object recognition by monkeys. Curr. Biol. 4, 401–414 (1994).

    CAS  Article  Google Scholar 

  16. Ashbridge, E., Perrett, D.I., Oram, M.W. & Jellema, T. Effect of image orientation and size on object recognition: responses of single units in the macaque monkey temporal cortex. Cognit. Neuropsychol. 17, 13–34 (2000).

    CAS  Article  Google Scholar 

  17. Schacter, D.L. & Buckner, R.L. Priming and the brain. Neuron 20, 185–195 (1998).

    CAS  Article  Google Scholar 

  18. Biederman, I. & Cooper, E.E. Evidence for complete translational and reflectional invariance in visual object priming. Perception 20, 585–593 (1991).

    CAS  Article  Google Scholar 

  19. Furmanski, C.S. & Engel, S.A. Perceptual learning in object recognition: object specificity and size invariance. Vision Res. 40, 473–484 (2000).

    CAS  Article  Google Scholar 

  20. Fiser, J. & Biederman, I. Invariance of long-term visual priming to scale, reflection, translation, and hemisphere. Vision Res. 41, 221–234 (2001).

    CAS  Article  Google Scholar 

  21. Cave, C.B., Bost, P.R. & Cobb, R.E. Effects of color and pattern on implicit and explicit picture memory. J. Exp. Psychol. Learn. Mem. Cogn. 22, 639–653 (1996).

    CAS  Article  Google Scholar 

  22. Desimone, R. Neural mechanisms for visual memory and their role in attention. Proc. Natl. Acad. Sci. USA 93, 13494–13499 (1996).

    CAS  Article  Google Scholar 

  23. Blaxton, T.A. et al. Functional mapping of human memory using PET: comparisons of conceptual and perceptual tasks. Can. J. Exp. Psychol. 50, 42–56 (1996).

    CAS  Article  Google Scholar 

  24. Buckner, R.L., Koutstaal, W., Schacter, D.L. & Rosen, B.R. Functional MRI evidence for a role of frontal and inferior temporal cortex in amodal components of priming. Brain 3, 620–640 (2000).

    Article  Google Scholar 

  25. Henson, R., Shallice, T. & Dolan, R. Neuroimaging evidence for dissociable forms of repetition priming. Science 287, 1269–1272 (2000).

    CAS  Article  Google Scholar 

  26. Buckner, R.L. et al. Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20, 285–296 (1998).

    CAS  Article  Google Scholar 

  27. James, T.W., Humphrey, G.K., Gati, J.S., Menon, R.S. & Goodale, M.A. Repetition priming and the time course of object recognition: an fMRI study. Neuroreport 10, 1019–1023 (1999).

    CAS  Article  Google Scholar 

  28. Koutstaal, W. et al. Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia 39, 184–199 (2001).

    CAS  Article  Google Scholar 

  29. van Turennout, M., Ellmore, T. & Martin, A. Long-lasting cortical plasticity in the object naming system. Nat. Neurosci 3, 1329–1334 (2000).

    CAS  Article  Google Scholar 

  30. Schacter, D.L. et al. Brain regions associated with retrieval of structurally coherent visual information. Nature 376, 587–590 (1995).

    CAS  Article  Google Scholar 

  31. Kourtzi, Z. & Kanwisher, N. Cortical regions involved in perceiving object shape. J. Neurosci. 20, 3310–3318 (2000).

    CAS  Article  Google Scholar 

  32. Kourtzi, Z. & Kanwisher, N. Representation of perceived object shape by the human lateral occipital complex. Science 293, 1506–1509 (2001).

    CAS  Article  Google Scholar 

  33. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    CAS  Article  Google Scholar 

  34. Grill-Spector, K., Kourtzi, Z. & Kanwisher, N. The lateral occipital complex and its role in object recognition. Vision Res. 41, 1409–1422 (2001).

    CAS  Article  Google Scholar 

  35. Bentin, S. & Moscovitch, M. The time course of repetition effects for words and unfamiliar faces. J. Exp. Psychol. Gen. 117, 148–60 (1988).

    CAS  Article  Google Scholar 

  36. Nagy, M.E. & Rugg, M.D. Modulation of event-related potentials by word repetition: the effects of inter-item lag. Psychophysiology 26, 431–436 (1989).

    CAS  Article  Google Scholar 

  37. Friston, K.J., Holmes, A.P., Price, C.J., Buchel, C. & Worsley, K.J. Multisubject fMRI studies and conjunction analyses. Neuroimage 10, 385–396 (1999).

    CAS  Article  Google Scholar 

  38. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 92, 8135–8139 (1995).

    CAS  Article  Google Scholar 

  39. Wagner, A.D., Koutstaal, W., Maril, A., Schacter, D.L. & Buckner, R.L. Task-specific repetition priming in left inferior prefrontal cortex. Cereb. Cortex 10, 1176–1184 (2000).

    CAS  Article  Google Scholar 

  40. Poggio, T. & Edelman, S. A network that learns to recognize three-dimensional objects.Nature 343, 263–266 (1990).

    CAS  Article  Google Scholar 

  41. Grill-Spector, K., Kushnir, T., Edelman, S., Itzchak, Y. & Malach, R. Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21, 191–202 (1998).

    CAS  Article  Google Scholar 

  42. Lerner, Y., Hendler, T., Ben-Bashat, D., Harel, M. & Malach, R. A hierarchical axis of object processing stages in the human visual cortex.Cereb. Cortex 11, 287–297 (2001).

    CAS  Article  Google Scholar 

  43. Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat Neurosci 2, 1019–1025 (1999).

    CAS  Article  Google Scholar 

  44. Burgund, E.D. & Marsolek, C.J. Viewpoint-invariant and viewpoint-dependent object recognition in dissociable neural subsystems. Psychonom. Bull. Rev. 7, 480–489 (2000).

    CAS  Article  Google Scholar 

  45. Tsunoda, K., Yamane, Y., Nishizaki, M. & Tanifuji, M. Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat. Neurosci. 4, 832–838 (2001).

    CAS  Article  Google Scholar 

  46. Farah, M.J. Visual Agnosia: Disorders of Object Recognition and What They Tell Us About Normal Vision (MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  47. Wallis, G. & Rolls, E.T. Invariant face and object recognition in the visual system. Prog. Neurobiol. 51, 167–194 (1997).

    CAS  Article  Google Scholar 

  48. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996).

    CAS  Article  Google Scholar 

  49. Friston, K.J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995).

    Article  Google Scholar 

  50. Worsley, K.J. et al. A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 4, 58–73 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Ellis, M. Tucker and M. Tarr for some of the stimuli, and the radiographers at the Functional Imaging Laboratory for technical assistance. This work was supported by Wellcome Programme grants to R.J.D. and J.D., a Wellcome Fellowship to R.N.H. and a Medical Research Council (UK) Co-operative Grant for 'Analysis of cognitive impairment and imaging of cognition' at University College London. J.D. holds a Royal Society–Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vuilleumier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vuilleumier, P., Henson, R., Driver, J. et al. Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat Neurosci 5, 491–499 (2002). https://doi.org/10.1038/nn839

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing