Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The information efficacy of a synapse

Abstract

We provide a functional measure, the synaptic information efficacy (SIE), to assess the impact of synaptic input on spike output. SIE is the mutual information shared by the presynaptic input and postsynaptic output spike trains. To estimate SIE we used a method based on compression algorithms. This method detects the effect of a single synaptic input on the postsynaptic spike output in the presence of massive background synaptic activity in neuron models of progressively increasing realism. SIE increased with increases either in time locking between the input synapse activity and the output spike or in the average number of output spikes. SIE depended on the context in which the synapse operates. We also measured SIE experimentally. Systematic exploration of the effect of synaptic and dendritic parameters on the SIE offers a fresh look at the synapse as a communication device and a quantitative measure of how much the dendritic synapse informs the axon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single dendritic synapses, among many other synapses, do matter.
Figure 2: MI as a measure of synaptic efficacy.
Figure 3: Effect of EPSP shape indices on the SIE.
Figure 4: SIE is context dependent.
Figure 5: Effect of dendritic input location on the SIE.
Figure 6: SIE in nonlinear dendrites.
Figure 7: Experimental measurements of the SIE.

Similar content being viewed by others

References

  1. Sherrington, C. S. The central nervous system. in A Text-Book of Physiology 7th edn. Vol. 3 (ed. Foster, M.) (Macmillan, London, 1897).

    Google Scholar 

  2. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Manwani, A. & Koch, C. Detecting and estimating signals over noisy and unreliable synapses: information-theoretic analysis. Neural Comput. 13, 1–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Fuhrmann, G., Segev, I., Markram, H. & Tsodyks, M. Coding of temporal information by activity-dependent synapses. J. Neurophysiol. 87, 140–148 (2002).

    Article  PubMed  Google Scholar 

  6. Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Gil, Z., Connors, B. W. & Amitai, Y. Efficacy of thalamocortical and intracortical synaptic connections: quanta, innervation, and reliability. Neuron 23, 385–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Bernander, O., Douglas, R. J., Martin, K. A. C. & Koch, C. Synaptic background activity determines spatio-temporal integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA 88, 11569–11573 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borg-Graham, L. J., Monier, C., & Fregnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Destexhe, A. & Pare, D. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. London, M. & Segev, I. Synaptic scaling in vitro and in vivo. Nat. Neurosci. 4, 853–855 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Fetz, E. E. & Gustafsson, B. Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones. J. Physiol. (Lond.), 387–410 (1983).

  13. Abeles, M. Corticonics. (Cambridge Univ. Press, Cambridge, 1991).

    Book  Google Scholar 

  14. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  15. Hoppfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2254–2258 (1982).

    Google Scholar 

  16. Yamada, S., Nakashima, M., Matsumoto, K. & Shiono, S. Information theoretic analysis of action potential trains. I. Analysis of correlation between two neurons. Biol. Cybern. 68, 215–220 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Rieke, F., Warland, D., de Ruyter van Steveninck, R. & Bialek, W. Spikes: Exploring the Neural Code. (MIT Press, Cambridge, Massachusetts, 1997).

    Google Scholar 

  18. Borst, A. & Theunissen, F. E. Information theory and neural coding. Nat. Neurosci. 2, 947–957 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Willems, F. M. J., Shtarkov, Y. M. & Tjalkens, T. The context-tree weighting method: basic properties. IEEE Trans. Info. Theory Vol. IT-41, 653–664 (1995).

    Article  Google Scholar 

  20. Pinsky, P. F. & Rinzel, J. Intrinsic and network rhythmogenesis in a reduced traub model for ca3 neurons J. Comput. Neurosci. 1, 39–60 (1994) [erratum in J. Comput. Neurosci. 2, 275 (1995)].

    Article  CAS  PubMed  Google Scholar 

  21. Mainen, Z. F. & Sejnowski, T. J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Segev, I. & London, M. Untangling dendrites with quantitative models. Science 290, 744–750 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Stuart, G. J. & Häusser, M. Dendritic coincidence detection of EPSPs and action potentials. Nat. Neurosci. 4, 63–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Stratford, R. D., Mason, A. J. R., Larkman, A. U., Major, G. & Jack, J. J. B. The modeling of pyramidal neurons in the visual cortex. in The Computing Neuron (eds. Durbin, R., Miall, C. & Mitchson, C.) Addison-Wesley, Reading, Massachusetts, 1989).

    Google Scholar 

  26. Nicoll, A., Larkman, A. & Blakemore, C. Modulation of EPSP shape and efficacy by intrinsic membrane conductances in rat neocortical pyramidal neurons in vitro. J. Physiol. (Lond.) 468, 693–710 (1993).

    Article  CAS  Google Scholar 

  27. Carnevale, N. T. & Johnston, D. Electrophysiological characterization of remote chemical synapses. J. Neurophysiol. 47, 606–621 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Oertel, D. Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J. Neurosci. 3, 2043–2053 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernander, O. & Koch, C. The effect of synchronized inputs at the single neuron level. Neural Comput. 6, 622–641 (1994).

    Article  Google Scholar 

  30. Murthy, V. N. & Fetz, E. E. Effects of input synchrony on the firing rate of a three-conductance cortical neuron model. Neural Comput. 6, 1111–1126 (1994).

    Article  Google Scholar 

  31. Rall, W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30, 1138–1168 (1967).

    Article  CAS  PubMed  Google Scholar 

  32. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Cook, E. P. & Johnston, D. Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input. J. Neurophysiol. 81, 535–543 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Iansek, R. & Redman, S. J. The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. J. Physiol. (Lond.) 234, 665–688 (1973).

    Article  CAS  Google Scholar 

  35. Levin, J. E. & Miller, J. P. Stochastic resonance enhances neural encoding of broadband stimuli in the cricket cercal sensory system. Nature 380, 165–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations. in Neural Theory and Modeling (ed. Reiss, R.) 73–97 (Stanford Univ. Press, Stanford, 1964).

    Google Scholar 

  37. Rinzel, J. & Rall, W. Transient response in a dendritic neuron model for current injected at one branch. Biophys. J. 14, 759–790 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Häusser, M. & Clark, B. A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).

    Article  PubMed  Google Scholar 

  39. Fricker, D. & Miles, R. EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron 28, 559–569 (2001).

    Article  Google Scholar 

  40. De Schutter, E. Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. J. Neurophysiol. 80, 504–519 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Reinagel, P., Godwin, D., Sherman, S. M. & Koch, C. Encoding of visual information by LGN bursts. J. Neurophysiol. 81, 2558–2569 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Magee, J. C. & Cook, E. P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat. Neurosci. 3, 895–903 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Reyes, A. Influence of dendritic conductances on the input-output properties of neurons. Annu. Rev. Neurosci. 24, 653–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Magee, J. C. Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Hines, M. L. & Carnevale, N. T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley, New York, 1991).

    Book  Google Scholar 

  47. Treves, A. & Panzeri, S. The upward bias in measures of information derived from limited data samples. Neural Comput. 7, 399–407 (1995).

    Article  Google Scholar 

  48. Strong, S. P., Koberle, R., de Ruyter van Steveninck, R. & Bialek, W. Entropy and information in neuronal spike trains. Phys. Rev. Lett. 80, 197–201 (1997).

    Article  Google Scholar 

  49. Schultz, S. R. & Panzeri, S. Temporal correlations and neural spike train entropy. Phys. Rev. Lett. 86, 5823–5826 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Contreras, D., Destexhe, A. & Steriade, M. Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J. Neurophysiol. 78, 335–350 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. El-Yaniv for his help in developing the entropy estimation method. This work was supported by grants from the ONR, NIMH, the US-Israel BSF, the Israel Science Foundation and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idan Segev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

London, M., Schreibman, A., Häusser, M. et al. The information efficacy of a synapse. Nat Neurosci 5, 332–340 (2002). https://doi.org/10.1038/nn826

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn826

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing