Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid turnover of actin in dendritic spines and its regulation by activity

An Erratum to this article was published on 01 May 2002

Abstract

Dendritic spines are motile structures that contain high concentrations of filamentous actin. Using hippocampal neurons expressing fluorescent actin and the method of fluorescence recovery after photobleaching, we found that 85 ± 2% of actin in the spine was dynamic, with a turnover time of 44.2 ± 4.0 s. The rapid turnover is not compatible with current models invoking a large population of stable filaments and static coupling of filaments to postsynaptic components. Low-frequency stimulation known to induce long-term depression in these neurons stabilized nearly half the dynamic actin in the spine. This effect depended on the activation of N-methyl-d-aspartate (NMDA) receptors and the influx of calcium. In neurons from mice lacking gelsolin, a calcium-dependent actin-binding protein, activity-dependent stabilization of actin was impaired. Our studies provide new information on the kinetics of actin turnover in spines, its regulation by neural activity and the mechanisms involved in this regulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence image of a neuron expressing EGFP–actin.
Figure 2: Fluorescence recovery after photobleaching reveals dynamic actin.
Figure 3: Parameters of actin turnover.
Figure 4: Actin turnover is not systematically related to age or size of spines.
Figure 5: Regulation of actin turnover in spines by activity.
Figure 6: Activity-dependent stabilization of actin is impaired in neurons lacking gelsolin.

Similar content being viewed by others

References

  1. Cajal, S. R. Y. On the structure of the cerebral cortex in certain mammals. La Cellule 7, 125–176 (1891).

    Google Scholar 

  2. Matus, A. Actin-based plasticity in dendritic spines. Science 290, 754–758 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Harris, K. M. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9, 343–348 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Segal, M. Rapid plasticity of dendritic spine: hints to possible functions? Prog. Neurobiol. 63, 61–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Halpain, S., Hipolito, A. & Saffer, L. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci. 18, 9835–9844 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rao, A. & Craig, A. M. Signaling between the actin cytoskeleton and the postsynaptic density of dendritic spines. Hippocampus 10, 527–541 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. & Yuste, R. Developmental regulation of spine motility in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 96, 13438–13443 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Korkotian, E. & Segal, M. Spike-associated fast contraction of dendritic spines in cultured hippocampal neurons. Neuron 30, 751–758 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Matus, A. Postsynaptic actin and neuronal plasticity. Curr. Opin. Neurobiol. 9, 561–565 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Ann. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  Google Scholar 

  14. Condeelis, J. How is actin polymerization nucleated in vivo? Trends Neurosci. 11, 288–293 (2001).

    CAS  Google Scholar 

  15. Wegner, A. Head-to-tail polymerization of actin. J. Mol. Biol. 108, 139–150 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. Nakayama, A. Y., Harms, M. B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Tashiro, A., Minden, A. & Yuste, R. Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb. Cortex 10, 927–938 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H. & Matus, A. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat. Neurosci. 3, 887–894 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Colicos, M. A., Collins, B. E., Sailor, M. J. & Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107, 605–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Axelrod, D., Knoppel, J., Schlessinger, E., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang, Y. L. Exchange of subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol. 101, 597–602 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature 352, 126–131 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. McGrath, J. L., Tardy, Y., Dewey, C. F. Jr., Meister, J. J. & Hartwig, J. H. Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophys. J. 75, 2070–2078 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sund, S. E. & Axelrod, D. Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching. Biophys. J. 79, 1655–1669 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cooper, J. A. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105, 1473–1478 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Bubb, M. R., Senderowicz, A. M., Sausville, E. A., Duncan, K. L. & Korn, E. D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J. Biol. Chem. 269, 14869–14871 (1994).

    CAS  PubMed  Google Scholar 

  27. Murthy, V. N., Schikorski, T., Stevens, C. F. & Zhu, Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Goda, Y. & Stevens, C. F. Long-term depression properties in a simple system. Neuron 16, 103–111 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Yin, H. L. & Stossel, T. P. Control of cytoplasmic actin gel–sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281, 583–586 (1979).

    Article  CAS  PubMed  Google Scholar 

  31. Yin, Y. L., Albrecht, J. H. & Fattoum, A. Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel–sol transformation and its intracellular distribution in a variety of cells and tissues. J. Cell Biol 91, 901–906 (1981).

    Article  CAS  PubMed  Google Scholar 

  32. Kinosian, H. J. et al. Ca2+ regulation of gelsolin activity: binding and severing of F-actin. Biophys. J. 75, 3101–3109 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Furukawa, K. et al. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 17, 8178–8186 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Witke, W. et al. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81, 41–51 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Murthy, V. N., Sejnowski, T. J. & Stevens, C. F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Halpain, S. Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci. 23, 141–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Allison, D. W., Gelfand, V. I., Spector, I. & Craig, A. M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci 18, 2423–2436 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhang, W. & Benson, D. L. Stages of synapse development defined by dependence on F-actin. J. Neurosci. 21, 5169–5181 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kim, C. H. & Lisman, J. E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 19, 4314–4324 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krucker, T., Siggins, G. R. & Halpain, S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl. Acad. Sci. USA 97, 6856–6861 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zhou, Q., Xiao, M. Y. & Nicoll, R. A. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc. Natl. Acad. Sci. USA 98, 1261–1266 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McGrath, J. L., Osborn, E. A., Tardy, Y. S., Dewey, C. F. Jr. & Hartwig, J. H. Regulation of the actin cycle in vivo by actin filament severing. Proc. Natl. Acad. Sci. USA 97, 6532–6537 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Janmey, P. A. et al. Interactions of gelsolin and gelsolin–actin complexes with actin. Effects of calcium on actin nucleation, filament severing and end blocking. Biochemistry 24, 3714–3723 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. Janmey, P. A. & Stossel, T. P. Modulation of gelsolin function by phospatidylinositol-4,5-bisphosphate. Nature 325, 362–364 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Pak, D. T., Yang, S., Rudolph-Correia, S., Kim, E. & Sheng, M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31, 289–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Sala, C. et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Scott, E. K. & Luo, L. How do dendrites take their shape? Nat. Neurosci 4, 359–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Arcaro, A. The small GTP-binding protein Rac promotes the dissociation of gelsolin from actin filaments in neutrophils. J. Biol. Chem. 273, 805–813 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Azuma, T., Witke, W., Stossel, T. P., Hartwig, J. H. & Kwiatkowski, D. J. Gelsolin is a downstream effector of rac for fibroblast motility. EMBO J. 17, 1362–1370 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Xia, Z., Dudek, H., Miranti, C. K. & Greenberg, M. E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci 16, 5425–5436 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Heiberger for maintaining the gsn−/− mouse colony, M. Meister and A. M. Craig for their comments on an early version of the manuscript, and Z. Li for assistance in some of the experiments. The work was supported by startup funds from Harvard University and a grant from the NIH. VNM is a Sloan Foundation Fellow, a Pew Scholar, an EJLB Foundation Scholar and a NARSAD Young Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesh N. Murthy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Star, E., Kwiatkowski, D. & Murthy, V. Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 5, 239–246 (2002). https://doi.org/10.1038/nn811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing