Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay

Abstract

Although long-term potentiation (LTP) is long-lasting, it is not permanent and decays within weeks after its induction. Little is known about the processes underlying this decay. Here we assessed the contribution of synaptic activity to LTP decay by determining the effect of the competitive NMDA receptor antagonist CPP on the decay of perforant path–dentate LTP. CPP blocked decay over a one-week period when administered daily following the induction of LTP, and blocked decay of the late, protein-synthesis-dependent phase of LTP when administered two days after LTP induction. CPP administered for a five-day period following spatial memory training enhanced subsequent memory retention. These data suggest that LTP is normally a persistent process that is actively reversed by NMDA receptor activation, and that both the early and late phases of LTP are dynamic processes regulated by NMDA receptors. These data also support the view that LTP is involved in maintaining spatial memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efficacy of a 10-mg/kg dose of the NMDA receptor antagonist CPP on LTP induced 12 and 24 h following administration.
Figure 2: Administration of CPP blocks LTP decay.
Figure 3: CPP blocks the decay of late-phase LTP.
Figure 4: CPP enhances retention of spatial memory.

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  2. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  3. Barnes, C. A. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74–104 (1979).

    Article  CAS  Google Scholar 

  4. Krug, M., Lossner, B. & Ott, T. Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res. Bull. 13, 39–42 (1984).

    Article  CAS  Google Scholar 

  5. Otani, S., Marshall, C. J., Tate, W. P., Goddard, G. V. & Abraham, W. C. Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization. Neuroscience 28, 519–526 (1989).

    Article  CAS  Google Scholar 

  6. Nguyen, P. V. & Kandel, E. R. A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J. Neurosci. 16, 3189–3198 (1996).

    Article  CAS  Google Scholar 

  7. Bailey, C. H. et al. Toward a molecular definition of long-term memory storage. Proc. Natl. Acad. Sci. USA 93, 13445–13452 (1996).

    Article  CAS  Google Scholar 

  8. Morris, R. G. M., Davis, S. & Butcher, S. P. in Long-term Potentiation: A Debate of the Current Issues (eds. J. L. Davis & M. Baudry) 267–300 (MIT Press, Cambridge, Massachusetts, 1991).

    Google Scholar 

  9. Strack, S., Barban, M. A., Wadzinski, B. E. & Colbran, R. J. Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. J. Neurochem. 68, 2119–2128 (1997).

    Article  CAS  Google Scholar 

  10. Lee, H. K., Kameyama, K., Huganir, R. L. & Bear, M. F. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21, 1151–1162 (1998).

    Article  CAS  Google Scholar 

  11. Xiao, M. Y., Niu, Y. P. & Wigstrom, H. Activity-dependent decay of early LTP revealed by dual EPSP recording in hippocampal slices from young rats. Eur. J. Neurosci. 9, 1916–1923 (1996).

    Article  Google Scholar 

  12. Abraham, W. C. & Mason, S. E. Effects of the NMDA receptor/channel antagonists CPP and MK801 on hippocampal field potentials and long-term potentiation in anesthetized rats. Brain Res. 462, 40–46 (1988).

    Article  CAS  Google Scholar 

  13. Bear, M. & Abraham, W. C. Long-term depression in hippocampus. Ann. Rev. Neurosci. 19, 437–462 (1996).

    Article  CAS  Google Scholar 

  14. Desmond, N. L., Colbert, C. M., Zhang, D. X. & Levy, W. B. NMDA receptor antagonists block the induction of long-term depression in the hippocampal dentate gyrus of the anesthetized rat. Brain Res. 552, 93–98 (1991).

    Article  CAS  Google Scholar 

  15. Christie, B. R. & Abraham, W. C. NMDA-dependent heterosynaptic long-term depression in the dentate gyrus of anaesthetized rats. Synapse 10, 1–6 (1992).

    Article  CAS  Google Scholar 

  16. Desmond, N. L. & Levy, W. B. Synaptic correlates of associative potentiation/depression: an ultrastructural study in the hippocampus. Brain Res. 265, 21–30 (1983).

    Article  CAS  Google Scholar 

  17. Abraham, W. C. & Goddard, G. V. Asymmetric relationships between homosynaptic long-term potentiation and heterosynaptic long-term depression. Nature 305, 717–719 (1983).

    Article  CAS  Google Scholar 

  18. Kulla, A., Reymann, K. G. & Manahan-Vaughan, D. Time-dependent induction of depotentiation in the dentate gyrus of freely moving rats: involvement of group 2 metabotropic glutamate receptors. Eur. J. Neurosci. 11, 3864–3872 (1999).

    Article  CAS  Google Scholar 

  19. Martin, S. J. Time-dependent reversal of dentate LTP by 5 Hz stimulation. Neuroreport 9, 3775–3781 (1998).

    Article  CAS  Google Scholar 

  20. Levy, W. B. & Steward, O. Synapses as associative memory elements in the hippocampal formation. Brain Res. 175, 233–245 (1979).

    Article  CAS  Google Scholar 

  21. Doyere, V., Srebro, B. & Laroche, S. Heterosynaptic LTD and depotentiation in the medial perforant path of the dentate gyrus in the freely moving rat. J. Neurophysiol. 77, 571–578 (1997).

    Article  CAS  Google Scholar 

  22. Xu, L., Anwyl, R. & Rowan, M. J. Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature 394, 891–894 (1998).

    Article  CAS  Google Scholar 

  23. Shors, T. J. & Matzel, L. D. Long-term potentiation: what's learning got to do with it? Behav. Brain Sci. 20, 597–614 (1997).

    CAS  PubMed  Google Scholar 

  24. Martin, S. J., Grimwood, P. D. & Morris, R. G. M. Synaptic plasticity and memory: an evaluation of the hypothesis. Ann. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  Google Scholar 

  25. Barnes, C. A., Danysz, W. & Parsons, C. G. Effects of the uncompetitive NMDA receptor antagonist memantine on hippocampal long-term potentiation, short-term exploratory modulation and spatial memory in awake, freely moving rats. Eur. J. Neurosci. 8, 565–571 (1996).

    Article  CAS  Google Scholar 

  26. Norris, C. M. & Foster, T. C. MK-801 improves retention in aged rats: implications for altered neural plasticity in age-related memory deficits. Neurobiol. Learn. Mem. 71, 194–206 (1999).

    Article  CAS  Google Scholar 

  27. Ebbinghaus, H. Memory: A Contribution to Experimental Psychology Über das Gedchtnis (Columbia Univ. Press, New York, 1913) (translated from Untersuchungen zur experimentellen Psychologie, Duncker & Humblot, Leipzig, Germany, 1885).

    Book  Google Scholar 

  28. Thorndike, E. L. The law of effect. Am. J. Psych. 39, 212–222 (1927).

    Article  Google Scholar 

  29. Christie, B. R. & Abraham, W. C. Priming of associative long-term depression in the dentate gyrus by theta frequency synaptic activity. Neuron 9, 79–84 (1992).

    Article  CAS  Google Scholar 

  30. Lambert, J. D. & Jones, R. S. A reevaluation of excitatory amino acid-mediated synaptic transmission in rat dentate gyrus. J. Neurophysiol. 4, 119–132 (1990).

    Article  Google Scholar 

  31. Barnes, C. A. & McNaughton, B. L. An age comparison of the rates of acquisition and forgetting of spatial information in relation to long-term enhancement of hippocampal synapses. Behav. Neurosci. 99, 1040–1048 (1985).

    Article  CAS  Google Scholar 

  32. Laroche, S., Doyere, V. & Bloch, V. Linear relation between the magnitude of long-term potentiation in the dentate gyrus and associative learning in the rat. A demonstration using commissural inhibition and local infusion of an N-methyl-d-aspartate receptor antagonist. Neuroscience 28, 375–386 (1989).

    Article  CAS  Google Scholar 

  33. Morris, R. G. M., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    Article  CAS  Google Scholar 

  34. Malleret, G. et al. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104, 675–686 (2001).

    Article  CAS  Google Scholar 

  35. Paxinos, G. & Watson, C. Stereotaxic Atlas of the Rat Brain (Academic, New York, 1982).

    Google Scholar 

  36. Staubli, U. & Lynch, G. Stable hippocampal long-term potentiation elicited by 'theta' pattern stimulation. Brain Res. 435, 227–234 (1987).

    Article  CAS  Google Scholar 

  37. Olton, D. S., Collison, C. & Werz, M. A. Spatial memory and radial arm maze performance in rats. Learn. Motiv. 8, 289–314 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank C. Wilson and B.J. Claiborne for comments on the manuscript, J. Bustamante, J. Burrell and B. Agrawal for technical support, and A. Gulledge for suggesting tests of spatial memory. Supported by NIDA (DA01983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian E. Derrick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villarreal, D., Do, V., Haddad, E. et al. NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay. Nat Neurosci 5, 48–52 (2002). https://doi.org/10.1038/nn776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing