Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pattern-motion responses in human visual cortex

Abstract

Physiological models of visual motion processing posit that 'pattern-motion cells' represent the direction of moving objects independent of their particular spatial pattern. We performed fMRI experiments to identify neuronal activity in the human brain selective for pattern motion. A protocol using adaptation to moving 'plaid' stimuli allowed us to separate pattern-motion responses from other types of motion-related activity within the same brain structures, and revealed strong pattern-motion selectivity in human visual area MT+. Reducing the perceptual coherence of the plaids yielded a corresponding decrease in pattern-motion responsivity, providing evidence that percepts of coherent motion are closely linked to the activity of pattern-motion cells in human MT+.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimuli and protocol for coherent-plaid adaptation experiment.
Figure 2: Pattern-motion adaptation in human visual cortex.

Similar content being viewed by others

References

  1. Movshon, J. A., Adelson, E. H., Gizzi, M. S. & Newsome, W. T. The analysis of moving visual patterns. Exp. Brain Res. 11, 117–152 (1986).

    Google Scholar 

  2. Rodman, H. R. & Albright, T. D. Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT). Exp. Brain Res. 75, 53–64 (1989).

    Article  CAS  Google Scholar 

  3. Albright, T. D. Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophysiol. 52, 1106–1130 (1984).

    Article  CAS  Google Scholar 

  4. Li, B., Chen, Y., Li, B. W., Wang, L. H. & Diao, Y. C. Pattern and component motion selectivity in cortical area PMLS of the cat. Eur. J. Neurosci. 14, 690–700 (2001).

    Article  CAS  Google Scholar 

  5. Stoner, G. R. & Albright, T. D. Neural correlates of perceptual motion coherence. Nature 358, 412–414 (1992).

    Article  CAS  Google Scholar 

  6. Adelson, E. H. & Movshon, J. A. Phenomenal coherence of moving visual patterns. Nature 300, 523–525 (1982).

    Article  CAS  Google Scholar 

  7. Stoner, G. R., Albright, T. D. & Ramachandran, V. S. Transparency and coherence in human motion perception. Nature 344, 153–155 (1990).

    Article  CAS  Google Scholar 

  8. Welch, L. The perception of moving plaids reveals two motion-processing stages. Nature 337, 734–736 (1989).

    Article  CAS  Google Scholar 

  9. Welch, L. & Bowne, S. F. Coherence determines speed discrimination. Perception 19, 425–435 (1990).

    Article  CAS  Google Scholar 

  10. Kooi, F. L. et al. Properties of the recombination of one-dimensional motion signals into a pattern motion signal. Percept. Psychophys. 52, 415–424 (1992).

    Article  CAS  Google Scholar 

  11. Smith, A. T. Coherence of plaids comprising components of disparate spatial frequencies. Vision Res. 32, 393–397 (1992).

    Article  CAS  Google Scholar 

  12. Heeger, D. J., Boynton, G. M., Demb, J. B., Seidemann, E. & Newsome, W. T. Motion opponency in visual cortex. J. Neurosci. 19, 7162–7174 (1999).

    Article  CAS  Google Scholar 

  13. Gegenfurtner, K. R., Kiper, D. C. & Levitt, J. B. Functional properties of neurons in macaque area V3. J. Neurophysiol. 77, 1906–1923 (1997).

    Article  CAS  Google Scholar 

  14. Engel, S. A. & Furmanski, C. S. Selective adaptation to color contrast in human primary visual cortex. J. Neurosci. 21, 3949–3954 (2001).

    Article  CAS  Google Scholar 

  15. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    Article  CAS  Google Scholar 

  16. Huk, A. C., Ress, D. & Heeger, D. J. Neuronal basis of the motion aftereffect reconsidered. Neuron 32, 161–172 (2001).

    Article  CAS  Google Scholar 

  17. Kourtzi, Z. & Kanwisher, N. Representation of perceived object shape by the human lateral occipital complex. Science 293, 1506–1509 (2001).

    Article  CAS  Google Scholar 

  18. Chawla, D. et al. Speed-dependent responses in V5: a replication study. Neuroimage 9, 508–515 (1999).

    Article  CAS  Google Scholar 

  19. Chawla, D., Phillips, J., Buechel, C., Edwards, R. & Friston, K. J. Speed-dependent motion-sensitive responses in V5: an fMRI study. Neuroimage 7, 86–96 (1998).

    Article  CAS  Google Scholar 

  20. Huk, A. C. & Heeger, D. J. Task-related modulation of visual cortex. J. Neurophysiol. 83, 3525–3536 (2000).

    Article  CAS  Google Scholar 

  21. Glover, G. H. & Lai, S. Self-navigated spiral fMRI: interleaved versus single-shot. Magn. Reson. Med. 39, 361–368 (1998).

    Article  CAS  Google Scholar 

  22. Nestares, O. & Heeger, D. J. Robust multiresolution alignment of MRI brain volumes. Magn. Reson. Med. 43, 705–715 (2000).

    Article  CAS  Google Scholar 

  23. Zeki, S. et al. A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 11, 641–649 (1991).

    Article  CAS  Google Scholar 

  24. Tootell, R. B. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215–3230 (1995).

    Article  CAS  Google Scholar 

  25. Watson, J. D. et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex 3, 79–94 (1993).

    Article  CAS  Google Scholar 

  26. Engel, S. A., Glover, G. H. & Wandell, B. A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

  27. Engel, S. A. et al. fMRI of human visual cortex. Nature 369, 525 (1994).

    Article  CAS  Google Scholar 

  28. DeYoe, E. A. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2382–2386 (1996).

    Article  CAS  Google Scholar 

  29. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  Google Scholar 

  30. Smith, A. M. et al. Investigation of low frequency drift in fMRI signal. Neuroimage 9, 526–533 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Newsome for helpful comments. The research was supported by an NEI grant (RO1-EY12741) and a grant from the Human Frontier Science Program (RG0070/1999-B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander C. Huk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huk, A., Heeger, D. Pattern-motion responses in human visual cortex. Nat Neurosci 5, 72–75 (2002). https://doi.org/10.1038/nn774

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing