Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct regulators control the expression of the mid-hindbrain organizer signal FGF8

Abstract

Local expression of FGF8 at the mid/hindbrain boundary (MHB) governs the development of multiple neurons and support cells. Here we show that the paired-domain protein Pax2 is necessary and sufficient for the induction of FGF8 in part by regulating the expression of Pax5&8. A network of transcription and secreted factors, including En1, Otx2, Gbx2, Grg4 and Wnt1&4, that is established independently of Pax2, further refines the expression domain and level of FGF8 at the MHB through opposing effects on Pax2 activity. Our results indicate that the expression of local organizing factors is controlled by combinatorial interaction between inductive and modulatory factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression pattern of endogenous Otx2, Gbx2, Pax2, FGF8 and Wnt1 in the chick embryos.
Figure 2: Ectopic expression of Otx2 and Pax2 in the chick embryo.
Figure 3: Ectopic expression of Gbx2 and Pax2 in the chick embryo.
Figure 4: Absence of FGF8 expression in Pax2−/− mouse embryos.
Figure 5: Regulation and activity of Grg4, En1 and Wnt1.
Figure 6: Putative interactions between negative and positive regulators of FGF8 in the MHB.

Similar content being viewed by others

References

  1. Martinez, S., Wassef, M. & Alvarado-Mallart, R. M. Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6, 971–981 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Marin, F. & Puelles, L. Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev. Biol. (Orlando) 163, 19–37 (1994).

    Article  CAS  Google Scholar 

  3. Crossley, P. H., Martinez, S. & Martin, G. R. Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Hidalgo-Sanchez, M., Millet, S., Simeone, A. & Alvarado-Mallart, R. M. Comparative analysis of Otx2, Gbx2, Pax2, Fgf8 and Wnt1 gene expressions during the formation of the chick midbrain/hindbrain domain. Mech. Dev. 81, 175–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, A. & Joyner, A. L. EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 128, 181–191 (2001).

    CAS  PubMed  Google Scholar 

  6. Boncinelli, E., Gulisano, M. & Broccoli, V. Emx and Otx homeobox genes in the developing mouse brain. J. Neurobiol. 24, 1356–1366 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Bouillet, P., Chazaud, C., Oulad-Abdelghani, M., Dollé, P. & Chambon, P. Sequence and expression pattern of the Stra7 (Gbx-2) homeobox-containing gene induced by retinoic acid in P19 embryonal carcinoma cells. Dev. Dyn. 204, 372–382 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Hollyday, M., McMahon, J. A. & McMahon, A. P. Wnt expression patterns in chick embryo nervous system. Mech. Dev. 52, 9–25 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Millet, S. et al. A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401, 161–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Broccoli, V., Boncinelli, E. & Wurst, W. The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401, 164–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Katahira, T. et al. Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mech. Dev. 91, 43–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Wassarman, K. M. et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124, 2923–2934 (1997).

    CAS  PubMed  Google Scholar 

  13. Rhinn, M. et al. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 125, 845–856 (1998).

    CAS  PubMed  Google Scholar 

  14. Rhinn, M., Dierich, A., Le Meur, M. & Ang, S. Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development 126, 4295–4304 (1999).

    CAS  PubMed  Google Scholar 

  15. Koop, K. E., MacDonald, L. M. & Lobe, C. G. Transcripts of Grg4, a murine groucho-related gene, are detected in adjacent tissues to other murine neurogenic gene homologues during embryonic development. Mech. Dev. 59, 73–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Eberhard, D., Jimenez, G., Heavey, B. & Busslinger, M. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 19, 2292–2303 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sugiyama, S., Funahashi, J. & Nakamura, H. Antagonizing activity of chick Grg4 against tectum-organizing activity. Dev. Biol. 221, 168–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Danielian, P. S. & McMahon, A. P. Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383, 332–334 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Simeone, A. Positioning the isthmic organizer where Otx2 and Gbx2 meet. Trends Genet. 16, 237–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Dressler, G. R., Deutsch, U., Chowdhury, K., Nornes, H. O. & Gruss, P. Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109, 787–795 (1990).

    CAS  PubMed  Google Scholar 

  21. Pfeffer, P. L., Bouchard, M. & Busslinger, M. Pax2 and homeodomain proteins cooperatively regulate a 435 bp enhancer of the mouse Pax5 gene at the midbrain–hindbrain boundary. Development 127, 1017–1028 (2000).

    CAS  PubMed  Google Scholar 

  22. Okafuji, T., Funahashi, J. & Nakamura, H. Roles of Pax-2 in initiation of the chick tectal development. Brain Res. Dev. Brain Res. 116, 41–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Acampora, D. et al. Visceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation. Development 125, 5091–5104 (1998).

    CAS  PubMed  Google Scholar 

  24. Bouchard, M., Pfeffer, P. & Busslinger, M. Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development 127, 3703–3713 (2000).

    CAS  PubMed  Google Scholar 

  25. Urbanek, P., Fetka, I., Meisler, M. H. & Busslinger, M. Cooperation of Pax2 and Pax5 in midbrain and cerebellum development. Proc. Natl. Acad. Sci. USA 94, 5703–5708 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mallo, M., Franco del Amo, F. & Gridley, T. Cloning and developmental expression of Grg, a mouse gene related to the groucho transcript of the Drosophila Enhancer of split complex. Mech. Dev. 42, 67–76 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. McMahon, A. P., Joyner, A. L., Bradley, A. & McMahon, J. A. The midbrain–hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69, 581–595 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Araki, I. & Nakamura, H. Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate. Development 126, 5127–5135 (1999).

    CAS  PubMed  Google Scholar 

  29. Shamim, H. et al. Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development 126, 945–959 (1999).

    CAS  PubMed  Google Scholar 

  30. Nakamura, H., Nakano, K. E., Igawa, H. H., Takagi, S. & Fujisawa, H. Plasticity and rigidity of differentiation of brain vesicles studied in quail-chick chimeras. Cell Differ. 19, 187–193 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Ye, W., Shimamura, K., Rubenstein, J. L., Hynes, M. A. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Meyers, E. N., Lewandoski, M. & Martin, G. R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat. Genet. 18, 136–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Nieuwkoop, P. D. The successive steps in the pattern formation of the amphibian central nervous system. Dev. Growth Differ. 32, 149–154 (1989).

    Google Scholar 

  34. Irving, C. & Mason, I. Regeneration of isthmic tissue is the result of a specific and direct interaction between rhombomere 1 and midbrain. Development 126, 3981–3989 (1999).

    CAS  PubMed  Google Scholar 

  35. Ang, S.-L. & Rossant, J. Anterior mesendoderm induces mouse Engrailed genes in explant cultures. Development 118, 139–149 (1993).

    CAS  PubMed  Google Scholar 

  36. Wurst, W. & Bally-Cuif, L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat. Rev. Neurosci. 2, 99–108 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Funahashi, J. et al. Role of Pax-5 in the regulation of a mid-hindbrain organizer's activity. Dev. Growth Differ. 41, 59–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, A., Losos, K. & Joyner, A. L. FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126, 4827–4838 (1999).

    CAS  PubMed  Google Scholar 

  39. Gemel, J., Jacobsen, C. & MacArthur, C. A. Fibroblast growth factor-8 expression is regulated by intronic engrailed and Pbx1-binding sites. J. Biol. Chem. 274, 6020–6026 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Li Song, D. & Joyner, A. L. Two Pax2/5/8-binding sites in Engrailed2 are required for proper initiation of endogenous mid-hindbrain expression. Mech. Dev. 90, 155–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, S. M., Danielian, P. S., Fritzsch, B. & McMahon, A. P. Evidence that FGF8 signalling from the midbrain–hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959–969 (1997).

    CAS  PubMed  Google Scholar 

  42. Martinez, S., Crossley, P. H., Cobos, I., Rubenstein, J. L. & Martin, G. R. FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126, 1189–1200 (1999).

    CAS  PubMed  Google Scholar 

  43. McMahon, A. P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Thomas, K. R. & Capecchi, M. R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Wurst, W., Auerbach, A. B. & Joyner, A. L. Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120, 2065–2075 (1994).

    CAS  PubMed  Google Scholar 

  46. Hynes, M. et al. The seven-transmembrane receptor smoothened cell-autonomously induces multiple ventral cell types. Nat. Neurosci. 3, 41–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Ang, S.-L., Conlon, R. A., Jin, O. & Rossant, J. Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120, 2979–2989 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Joyner for sharing unpublished results and for the chick En1 and En2 cDNAs, G. Martin, J. Rubenstein and E. Miyashita for Gbx2 mutant mice, A. Simeone for the full-length mouse and partial chick Otx2 cDNAs, A. Leutz for the full-length chick Gbx2 cDNA, G. Martin for the chick FGF8 cDNA, A. Lumsden for the chick Hoxa2 cDNA, A. McMahon for the chick Wnt1 and Wnt4 cDNAs and S. Greenwood for reading the manuscript. This research was supported in part by Boehringer Ingelheim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnon Rosenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, W., Bouchard, M., Stone, D. et al. Distinct regulators control the expression of the mid-hindbrain organizer signal FGF8. Nat Neurosci 4, 1175–1181 (2001). https://doi.org/10.1038/nn761

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing