Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A post-docking role for active zone protein Rim

Abstract

Rim1 was previously identified as a Rab3 effector localized to the presynaptic active zone in vertebrates. Here we demonstrate that C. elegans unc-10 mutants lacking Rim are viable, but exhibit behavioral and physiological defects that are more severe than those of Rab3 mutants. Rim is localized to synaptic sites in C. elegans, but the ultrastructure of the presynaptic densities is normal in Rim mutants. Moreover, normal levels of docked synaptic vesicles were observed in mutants, suggesting that Rim is not involved in the docking process. The level of fusion competent vesicles at release sites was reduced fivefold in Rim mutants, but calcium sensitivity of release events was unchanged. Furthermore, expression of a constitutively open form of syntaxin suppressed the physiological defects of Rim mutants, suggesting Rim normally acts to regulate conformational changes in syntaxin. These data suggest Rim acts after vesicle docking likely via regulating priming.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of the C. elegans unc-10 gene.
Figure 2: Rim protein localizes to a subdomain of the synapse.
Figure 3: Behavioral defects of Rim mutants.
Figure 4: Localization of Rim, RAB-3 and UNC-13 in different mutant backgrounds.
Figure 5: Structure of neuromuscular junctions in Rim mutants.
Figure 6: Defects in evoked and spontaneous release at the neuromuscular junction.
Figure 7: Open syntaxin suppresses Rim-evoked release defect.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Burns, M. & Augustine, G. Synaptic structure and function: dynamic organization yields architectural precision. Cell 83, 187–194 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Heuser, J. E. & Reese, T. S. in Handbook of Physiology I: The Nervous System (eds. Kandel, E. R.) 261–294 (American Physiological Society, Baltimore, 1973).

    Google Scholar 

  3. Landis, D. M., Hall, A. K., Weinstein, L. A. & Reese, T. S. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1, 201–209 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Garner, C. C., Kindler, S. & Gundelfinger, E. D. Molecular determinants of presynaptic active zones. Curr. Opin. Neurobiol. 10, 321–327 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Südhof, T. C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388, 593–598 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Ozaki, N. et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat. Cell Biol. 2, 805–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Betz, A. et al. Functional interaction of the active zone proteins munc13-1 and rim1 in synaptic vesicle priming. Neuron 30, 183–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Fischer von Mollard, G. et al. rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acad. Sci. USA 87, 1988–1992 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geppert, M. et al. The role of Rab3A in neurotransmitter release. Nature 369, 493–497 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Geppert, M. & Südhof, T. C. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu. Rev. Neurosci. 21, 75–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Nonet, M. L. et al. C. elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8021–8073 (1997).

    Article  Google Scholar 

  12. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Dixon, D. & Atwood, H. L. Adenylate cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction. J. Neurosci. 9, 4246–4252 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhong, Y. & Wu, C. F. Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science 251, 198–201 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Bailey, C. H., Bartsch, D. & Kandel, E. R. Toward a molecular definition of long-term memory storage. Proc. Natl. Acad. Sci. USA 93, 13445–13452 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K. & Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2, 965–971 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Augustin, I., Rosenmund, C., Südhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Richmond, J. E., Davis, W. S. & Jorgensen, E. M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 2, 959–964 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richmond, J. E., Weimer, R. M. & Jorgensen, E. M. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338–341 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen, M., Alfonso, A., Johnson, C. D. & Rand, J. B. Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140, 527–535 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller, K.G. et al. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc. Natl. Acad. Sci. USA 93, 12593–12598 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rand, J. B. & Nonet, M. L. Synaptic transmission. in C. elegans II (eds. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 611–644 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997).

    Google Scholar 

  25. Kohn, R. E. et al. Expression of multiple UNC-13 proteins in the Caenorhabditis elegans nervous system. Mol. Biol. Cell 11, 3441–3452 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nonet, M. L., Saifee, O., Zhao, H., Rand, J. B. & Wei, L. Synaptic transmission deficits in C. elegans synaptobrevin mutants. J. Neurosci. 18, 70–80 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saifee, O., Wei, L. P. & Nonet, M. L. The C. elegans unc-64 gene encodes a syntaxin which interacts genetically with synaptobrevin. Mol. Biol. Cell 9, 1235–1252 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iwasaki, K., Staunton, J., Saifee, O., Nonet, M. L. & Thomas, J. aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18, 613–622 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Shirataki, H. et al. Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol. Cell Biol. 13, 2061–2068 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Staunton, J., Ganetzky, B. & Nonet, M. L. Rabphilin potentiates SNARE function independently of rab3. J. Neurosci. (in press).

  31. Wang, Y., Sugita, S. & Sudhof, T. C. The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins. J. Biol. Chem. 275, 20033–20044 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Hall, D. H. & Hedgecock, E. M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837–847 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Nonet, M. L., Grundahl, K., Meyer, B. J. & Rand, J. B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73, 1291–1305 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Richmond, J. E. & Jorgensen, E. M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 2, 791–797 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klenchin, V. A. & Martin, T. F. Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie 82, 399–407 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Rizo, J. & Südhof, T. C. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15879–15882 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, Y. A., Scales, S. J. & Scheller, R. H. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30, 161–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harris, T. W., Hartwieg, E., Horvitz, H. R. & Jorgensen, E. M. Mutations in synaptojanin disrupt synaptic vesicle recycling. J. Cell Biol. 150, 589–600 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nonet, M.L. et al. UNC-11, a C. elegans AP180 homolog, regulates the size and protein composition of synaptic vesicles. Mol. Biol. Cell 10, 2343–2360 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jorgensen, E. M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Sulston, J. & Hodgkin, J. in The Nematode Caenorhabditis elegans (ed. Wood, W.B.) 587–606 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988).

    Google Scholar 

  43. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Philips for cutting serial sections, L. Wei for technical assistance, R. Kohn, J. Deurr and J. Rand for providing UNC-13 antisera and unc-10 alleles, and N. Brose and T. Südhof for communicating unpublished data. This work was funded by a grant from the U.S. PHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Nonet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koushika, S., Richmond, J., Hadwiger, G. et al. A post-docking role for active zone protein Rim. Nat Neurosci 4, 997–1005 (2001). https://doi.org/10.1038/nn732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing