Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells

Abstract

Neural stem cells that continue to produce neurons are retained in the adult hippocampal dentate gyrus. The mechanisms by which embryonic neural progenitors expand and transform into postnatal neural stem cells, an essential process for the continual production of neurons throughout life, remain unknown. We found that radial astrocytes, the postnatal progenitors in the dentate gyrus, failed to develop after embryonic ablation of ciliary genes or Smoothened (Smo), an essential component for Sonic hedgehog (Shh) signaling. Postnatal dentate neurogenesis failed in these mutant mice, and the dentate gyrus became severely hypotrophic. In contrast, expression of a constitutively active Smo (SmoM2-YFP) resulted in a marked expansion of the dentate gyrus. Double-mutant analyses suggested that both wild-type Smo and SmoM2-YFP function through the primary cilia. We conclude that Shh signaling, acting through the primary cilia, has a critical role in the expansion and establishment of postnatal hippocampal progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ablation of Kif3a removes primary cilia and disrupts germinal activity in the adult dentate gyrus.
Figure 2: hGFAP::Cre; Kif3afl/fl mice fail to expand GNPs and to establish adult stem cells in the dentate gyrus.
Figure 3: Ift88orpk/orpk mice show decreased proliferation of GNPs in the dentate gyrus.
Figure 4: hGFAP::Cre; Kif3afl//fl mice show defective Shh signaling in the dentate gyrus.
Figure 5: hGFAP::Cre; Smofl/fl mice show defects in dentate gyrus development that resemble hGFAP::Cre; Kif3afl/fl mice.
Figure 6: Primary cilia are required for the function of both wild-type and constitutively active Smo.

Similar content being viewed by others

References

  1. Altman, J. & Bayer, S.A. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J. Comp. Neurol. 301, 365–381 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Li, G. & Pleasure, S.J. Morphogenesis of the dentate gyrus: what we are learning from mouse mutants. Dev. Neurosci. 27, 93–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Filippov, V. et al. Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol. Cell. Neurosci. 23, 373–382 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Fukuda, S. et al. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J. Neurosci. 23, 9357–9366 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seri, B., Garcia-Verdugo, J.M., McEwen, B.S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosenbaum, J.L. & Witman, G.B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Davis, E.E., Brueckner, M. & Katsanis, N. The emerging complexity of the vertebrate cilium: new functional roles for an ancient organelle. Dev. Cell 11, 9–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Scholey, J.M. & Anderson, K.V. Intraflagellar transport and cilium-based signaling. Cell 125, 439–442 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Singla, V. & Reiter, J.F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Haycraft, C.J. et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huangfu, D. & Anderson, K.V. Cilia and Hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci. USA 102, 11325–11330 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huangfu, D. et al. Hedgehog signaling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, A., Wang, B. & Niswander, L.A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132, 3103–3111 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. May, S.R. et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev. Biol. 287, 378–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Corbit, K.C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Rohatgi, R., Milenkovic, L. & Scott, M.P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Badano, J.L., Mitsuma, N., Beales, P.L. & Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Davenport, J.R. et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol. 17, 1586–1594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alvarez-Buylla, A., Garcia-Verdugo, J.M. & Tramontin, A.D. A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Doetsch, F., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kozminski, K.G., Beech, P.L. & Rosenbaum, J.L. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J. Cell Biol. 131, 1517–1527 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Rickmann, M., Amaral, D.G. & Cowan, W.M. Organization of radial glial cells during the development of the rat dentate gyrus. J. Comp. Neurol. 264, 449–479 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Zhuo, L. et al. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Pleasure, S.J., Collins, A.E. & Lowenstein, D.H. Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development. J. Neurosci. 20, 6095–6105 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown, C.L. et al. Kinesin-2 is a motor for late endosomes and lysosomes. Traffic 6, 1114–1124 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Le Bot, N., Antony, C., White, J., Karsenti, E. & Vernos, I. Role of xklp3, a subunit of the Xenopus kinesin II heterotrimeric complex, in membrane transport between the endoplasmic reticulum and the Golgi apparatus. J. Cell Biol. 143, 1559–1573 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haraguchi, K., Hayashi, T., Jimbo, T., Yamamoto, T. & Akiyama, T. Role of the kinesin-2 family protein, KIF3, during mitosis. J. Biol. Chem. 281, 4094–4099 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Murcia, N.S. et al. The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 127, 2347–2355 (2000).

    CAS  PubMed  Google Scholar 

  29. Moyer, J.H. et al. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264, 1329–1333 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Delous, M. et al. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat. Genet. 39, 875–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Vierkotten, J., Dildrop, R., Peters, T., Wang, B. & Ruther, U. Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134, 2569–2577 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Chizhikov, V.V. et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J. Neurosci. 27, 9780–9789 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahn, S. & Joyner, A.L. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437, 894–897 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Goodrich, L.V., Milenkovic, L., Higgins, K.M. & Scott, M.P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39, 937–950 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res. 66, 10171–10178 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bagri, A. et al. The chemokine SDF1 regulates migration of dentate granule cells. Development 129, 4249–4260 (2002).

    CAS  PubMed  Google Scholar 

  38. Lai, K., Kaspar, B.K., Gage, F.H. & Schaffer, D.V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci. 6, 21–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Haycraft, C.J. et al. Intraflagellar transport is essential for endochondral bone formation. Development 134, 307–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Matsuura, K., Lefebvre, P.A., Kamiya, R. & Hirono, M. Kinesin-II is not essential for mitosis and cell growth in Chlamydomonas. Cell Motil. Cytoskeleton 52, 195–201 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Miller, M.S. et al. Mutant kinesin-2 motor subunits increase chromosome loss. Mol. Biol. Cell 16, 3810–3820 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferrante, M.I. et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat. Genet. 38, 112–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Kondo, S. et al. KIF3A is a new microtubule-based anterograde motor in the nerve axon. J. Cell Biol. 125, 1095–1107 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Muresan, V., Lyass, A. & Schnapp, B.J. The kinesin motor KIF3A is a component of the presynaptic ribbon in vertebrate photoreceptors. J. Neurosci. 19, 1027–1037 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marszalek, J.R. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102, 175–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Long, F., Zhang, X.M., Karp, S., Yang, Y. & McMahon, A.P. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 128, 5099–5108 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to L.S. Goldstein for providing us with the Kif3a conditional mutant mice, N. Murcia for Ift88orpk mice, and J. Reiter and D. Rowitch for Smo and SmoM2 conditional mutant mice and PtclacZ/+ mice. We thank R. Ihrie, D. Lim, S. Pleasure, J. Reiter and C. Yaschine on the manuscript. The work was supported by a Mark Linder/American Brain Tumor Association Fellowship to Y.-G.H. and by grants (NS28478 and HD32116) from the US National Institutes of Health and a grant from the Goldhirsh foundation to A.A.-B. N.S. was supported by the Human Frontier Science Program and the Agence Nationale de la Recherche. Confocal microscopy at Diabetes Endocrinology Research Center Microscopy and Imaging Core was supported by an US National Institute of Health grant (P30 DK063720).

Author information

Authors and Affiliations

Authors

Contributions

Y.-G.H. designed and performed most of the experiments. M.R.-R. and J.-M.G.-V. carried out the electron microscopic analyses. N.S. assisted with the initial analysis of hGFAP::Cre; Kif3afl/fl mice. N.S. and A.A. analyzed the Ftm−/− mice. S.S.-M. provided the Ftm−/− mice. A.A.-B. supervised the project. Y.-G.H. and A.A.-B. wrote the manuscript.

Corresponding author

Correspondence to Arturo Alvarez-Buylla.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 359 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, YG., Spassky, N., Romaguera-Ros, M. et al. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci 11, 277–284 (2008). https://doi.org/10.1038/nn2059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2059

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing