Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular pathway of neurodegeneration linking α-synuclein to ApoE and Aβ peptides

Abstract

Pathogenic aggregates of α-synuclein are thought to contribute to the development of Parkinson's disease. Inclusion bodies containing α-synuclein are present in Parkinson's disease and other neurodegenerative diseases, including Alzheimer's disease. Moreover, α-synuclein mutations are found in cases of familial Parkinson's disease, and transgenic overexpression of α-synuclein causes neurodegeneration in mice. The molecular mechanisms involved, however, remain incompletely understood. Here we show that, in transgenic mice, α-synuclein induced neurodegeneration involves activation of the ubiquitin/proteasome system, a massive increase in apolipoprotein E (ApoE) levels and accumulation of insoluble mouse Aβ. ApoE was not protective, but was injurious, as deletion of ApoE delayed the neurodegeneration caused by α-synuclein and suppressed the accumulation of Aβ. Our data reveal a molecular link between central pathogenic mechanisms implicated in Parkinson's disease and Alzheimer's disease and suggest that intracellular α-synuclein is pathogenic, at least in part, by activation of extracellular signaling pathways involving ApoE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotype of mice expressing A30P-mutant α-synuclein.
Figure 2: Spinal cord neurodegeneration in α-synuclein transgenic mice involves the UPS.
Figure 3: Spinal cord neurodegeneration in α-synuclein transgenic mice involves increased ApoE.
Figure 4: Spinal cord neurodegeneration in α-synuclein transgenic mice involves increased levels of Aβ and cellular Aβ immunostaining.
Figure 5: Deletion of ApoE protects against α-synuclein–induced neurodegeneration.
Figure 6: Deletion of ApoE decreases ubiquitin and increases α-synuclein solubility in A30P-mutant α-synuclein transgenic mice.
Figure 7: Deletion of ApoE decreases formation of cellular Aβ immunostaining and Aβ levels in A30P-mutant α-synuclein transgenic mice.

Similar content being viewed by others

References

  1. Polymeropoulos, M.H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  Google Scholar 

  2. Spillantini, M.G. et al. α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  Google Scholar 

  3. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nat. Genet. 18, 106–108 (1998).

    Article  CAS  Google Scholar 

  4. El-Agnaf, O.M., Jakes, R., Curran, M.D. & Wallace, A. Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of α-synuclein protein implicated in Parkinson's disease. FEBS Lett. 440, 67–70 (1998).

    Article  CAS  Google Scholar 

  5. Giasson, B.I., Uryu, K., Trojanowski, J.Q. & Lee, V.M. Mutant and wild type human α-synucleins assemble into elongated filaments with distinct morphologies in vitro. J. Biol. Chem. 274, 7619–7622 (1999).

    Article  CAS  Google Scholar 

  6. Narhi, L. et al. Both familial Parkinson's disease mutations accelerate α-synuclein aggregation. J. Biol. Chem. 274, 9843–9846 (1999).

    Article  CAS  Google Scholar 

  7. Spillantini, M.G. & Goedert, M. The α-synucleinopathies: Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Ann. NY Acad. Sci. 920, 16–27 (2000).

    Article  CAS  Google Scholar 

  8. Singleton, A.B. et al. α-synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  Google Scholar 

  9. Chartier-Harlin, M.C. et al. α-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).

    Article  CAS  Google Scholar 

  10. Ibanez, P. et al. Causal relation between α-synuclein gene duplication and familial Parkinson's disease. Lancet 364, 1169–1171 (2004).

    Article  CAS  Google Scholar 

  11. Masliah, E. et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269 (2000).

    Article  CAS  Google Scholar 

  12. Lee, M.K. et al. Human α-synuclein-harboring familial Parkinson's disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc. Natl. Acad. Sci. USA 99, 8968–8973 (2002).

    Article  CAS  Google Scholar 

  13. Fernagut, P.O. & Chesselet, M.F. α-synuclein and transgenic mouse models. Neurobiol. Dis. 17, 123–130 (2004).

    Article  CAS  Google Scholar 

  14. Snyder, H. & Wolozin, B. Pathological proteins in Parkinson's disease: focus on the proteasome. J. Mol. Neurosci. 24, 425–442 (2004).

    Article  CAS  Google Scholar 

  15. Springer, W. & Kahle, P.J. Mechanisms and models of α-synuclein–related neurodegeneration. Curr. Neurol. Neurosci. Rep. 6, 432–436 (2006).

    Article  CAS  Google Scholar 

  16. Chandra, S., Gallardo, G., Fernandez-Chacon, R., Schluter, O.M. & Sudhof, T.C. α-synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123, 383–396 (2005).

    Article  CAS  Google Scholar 

  17. Corder, E.H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late-onset families. Science 261, 921–923 (1993).

    Article  CAS  Google Scholar 

  18. Huang, X., Chen, P.C. & Poole, C. APOE-[epsilon]2 allele associated with higher prevalence of sporadic Parkinson disease. Neurology 62, 2198–2202 (2004).

    Article  CAS  Google Scholar 

  19. Li, Y.J. et al. Apolipoprotein E controls the risk and age at onset of Parkinson disease. Neurology 62, 2005–2009 (2004).

    Article  CAS  Google Scholar 

  20. Tsuang, D.W. et al. Familial dementia with lewy bodies: a clinical and neuropathological study of two families. Arch. Neurol. 59, 1622–1630 (2002).

    Article  Google Scholar 

  21. Horsburgh, K., Graham, D.I., Stewart, J. & Nicoll, J.A. Influence of apolipoprotein E genotype on neuronal damage and apoE immunoreactivity in human hippocampus following global ischemia. J. Neuropathol. Exp. Neurol. 58, 227–234 (1999).

    Article  CAS  Google Scholar 

  22. Mahley, R.W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240, 622–630 (1988).

    Article  CAS  Google Scholar 

  23. Ma, J., Yee, A., Brewer, H.B. Jr., Das, S. & Potter, H. Amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 372, 92–94 (1994).

    Article  CAS  Google Scholar 

  24. Brecht, W.J. et al. Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci. 24, 2527–2534 (2004).

    Article  CAS  Google Scholar 

  25. Strittmatter, W.J. et al. Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 11183–11186 (1994).

    Article  CAS  Google Scholar 

  26. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006).

    Article  CAS  Google Scholar 

  27. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  Google Scholar 

  28. Schmued, L.C. & Hopkins, K.J. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 874, 123–130 (2000).

    Article  CAS  Google Scholar 

  29. Mahley, R.W., Weisgraber, K.H. & Huang, Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc. Natl. Acad. Sci. USA 103, 5644–5651 (2006).

    Article  CAS  Google Scholar 

  30. Ignatius, M.J. et al. Expression of apolipoprotein E during nerve degeneration and regeneration. Proc. Natl. Acad. Sci. USA 83, 1125–1129 (1986).

    Article  CAS  Google Scholar 

  31. DeMattos, R.B. et al. Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 99, 10843–10848 (2002).

    Article  CAS  Google Scholar 

  32. Roy, S., Zhang, B., Lee, V.M. & Trojanowski, J.Q. Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol. 109, 5–13 (2005).

    Article  Google Scholar 

  33. Holtzman, D.M. In vivo effects of ApoE and clusterin on amyloid-β metabolism and neuropathology. J. Mol. Neurosci. 23, 247–254 (2004).

    Article  CAS  Google Scholar 

  34. Tandon, A., Rogaeva, E. & Mullan, M. St George-Hyslop, P.H. Molecular genetics of Alzheimer's disease: the role of β-amyloid and the presenilins. Curr. Opin. Neurol. 13, 377–384 (2000).

    Article  CAS  Google Scholar 

  35. Piedrahita, J.A., Zhang, S.H., Hagaman, J.R., Oliver, P.M. & Maeda, N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl. Acad. Sci. USA 89, 4471–4475 (1992).

    Article  CAS  Google Scholar 

  36. Coleman, M. Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 6, 889–898 (2005).

    Article  CAS  Google Scholar 

  37. Hall, S.M. Observations on the progress of Wallerian degeneration in transected peripheral nerves of C57BL/Wld mice in the presence of recruited macrophages. J. Neurocytol. 22, 480–490 (1993).

    Article  CAS  Google Scholar 

  38. Chen, L., Thiruchelvam, M.J., Madura, K. & Richfield, E.K. Proteasome dysfunction in aged human α-synuclein transgenic mice. Neurobiol. Dis. 23, 120–126 (2006).

    Article  CAS  Google Scholar 

  39. Nonaka, T., Iwatsubo, T. & Hasegawa, M. Ubiquitination of α-synuclein. Biochemistry 44, 361–368 (2005).

    Article  CAS  Google Scholar 

  40. Fagan, A.M. et al. Human and murine ApoE markedly alters Aβ metabolism before and after plaque formation in a mouse model of Alzheimer's disease. Neurobiol. Dis. 9, 305–318 (2002).

    Article  CAS  Google Scholar 

  41. Dolev, I. & Michaelson, D.M. A nontransgenic mouse model shows inducible amyloid-β (Aβ) peptide deposition and elucidates the role of apolipoprotein E in the amyloid cascade. Proc. Natl. Acad. Sci. USA 101, 13909–13914 (2004).

    Article  CAS  Google Scholar 

  42. Kuo, Y.M. et al. Elevated Aβ and apolipoprotein E in A βPP transgenic mice and its relationship to amyloid accumulation in Alzheimer's disease. Mol. Med. 6, 430–439 (2000).

    Article  CAS  Google Scholar 

  43. Bales, K.R. et al. Lack of apolipoprotein E dramatically reduces amyloid β–peptide deposition. Nat. Genet. 17, 263–264 (1997).

    Article  CAS  Google Scholar 

  44. Masliah, E. β-amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. Proc. Natl. Acad. Sci. USA 98, 12245–12250 (2001).

    Article  CAS  Google Scholar 

  45. Rosahl, T.W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995).

    Article  CAS  Google Scholar 

  46. Ihara, M. et al. Sept4, a component of presynaptic scaffold and Lewy bodies, is required for the suppression of α-synuclein neurotoxicity. Neuron 53, 519–533 (2007).

    Article  CAS  Google Scholar 

  47. Dewachter, I. et al. Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilin1. J. Neurosci. 20, 6452–6458 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank I. Kornblum, L. Fan, J. Mitchell and A. Roth for excellent technical assistance. This paper was supported by US National Institutes of Health Grant R01 MH069585 (to T.C.S.).

Author information

Authors and Affiliations

Authors

Contributions

G.G. conducted and analyzed the experiments and wrote the manuscript. O.M.S. contributed transgenic mice used for the study. T.C.S. designed the experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Gilbert Gallardo.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Methods (PDF 2200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallardo, G., Schlüter, O. & Südhof, T. A molecular pathway of neurodegeneration linking α-synuclein to ApoE and Aβ peptides. Nat Neurosci 11, 301–308 (2008). https://doi.org/10.1038/nn2058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing