Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila

Abstract

Many lines of evidence indicate that GABA and GABAA receptors make important contributions to human sleep regulation. Pharmacological manipulation of these receptors has differential effects on sleep onset and sleep maintenance insomnia. Here we show that sleep is regulated by GABA in Drosophila and that a mutant GABAA receptor, RdlA302S, specifically decreases sleep latency. The drug carbamazepine (CBZ) has the opposite effect on sleep; it increases sleep latency as well as decreasing sleep. Behavioral and physiological experiments indicated that RdlA302S mutant flies are resistant to the effects of CBZ on sleep latency and that mutant RDLA302S channels are resistant to the effects of CBZ on desensitization, respectively. These results suggest that this biophysical property of the channel, specifically channel desensitization, underlies the regulation of sleep latency in flies. These experiments uncouple the regulation of sleep latency from that of sleep duration and suggest that the kinetics of GABAA receptor signaling dictate sleep latency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GABAergic neurons control sleep in Drosophila. Sleep parameters are shown for flies expressing a hyperpolarizing potassium channel (UAS-Shaw) under the control of GAD-GAL4. Single transgene sibling controls (UAS only and GAL4 only) are also shown.
Figure 2: RdlA302S flies show decreased sleep latency and increased sleep-episode duration.
Figure 3: CBZ markedly decreases fly sleep by increasing sleep latency and decreasing episode duration (a) Conventional sleep plot showing the effect of different concentrations of CBZ on the sleep pattern of wild-type (Canton-S) flies during the first day of drug treatment.
Figure 4: RdlA302S flies are resistant to CBZ effects on sleep latency, but not to its effects on sleep-episode duration.
Figure 5: The RdlA302S mutation rescues sleep homeostasis.
Figure 6: CBZ specifically increases RDL desensitization and the A302S mutation prevents CBZ effects (a) Response to 90-s application of 100 μM GABA with variable doses of CBZ, recorded from oocytes expressing RDL held at −60 mV under voltage clamp.

Similar content being viewed by others

References

  1. Roth, T. Prevalence, associated risks, and treatment patterns of insomnia. J. Clin. Psychiatry 66 Suppl 9, 10–13 quiz 42–43 (2005).

    PubMed  Google Scholar 

  2. Rosenberg, R.P. Sleep maintenance insomnia: strengths and weaknesses of current pharmacologic therapies. Ann. Clin. Psychiatry 18, 49–56 (2006).

    Article  Google Scholar 

  3. Holbrook, A.M., Crowther, R., Lotter, A., Cheng, C. & King, D. Meta-analysis of benzodiazepine use in the treatment of insomnia. CMAJ 162, 225–233 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith, G.B. & Olsen, R.W. Functional domains of GABAA receptors. Trends Pharmacol. Sci. 16, 162–168 (1995).

    Article  CAS  Google Scholar 

  5. Hevers, W. & Luddens, H. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol. Neurobiol. 18, 35–86 (1998).

    Article  CAS  Google Scholar 

  6. Gottesmann, C. GABA mechanisms and sleep. Neuroscience 111, 231–239 (2002).

    Article  CAS  Google Scholar 

  7. Lancel, M. Role of GABAA receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. Sleep 22, 33–42 (1999).

    Article  CAS  Google Scholar 

  8. Greenspan, R.J. & Dierick, H.A. 'Am not I a fly like thee?' From genes in fruit flies to behavior in humans. Hum. Mol. Genet. 13 Spec No 2, R267–273 (2004).

    Article  CAS  Google Scholar 

  9. Hendricks, J.C., Sehgal, A. & Pack, A.I. The need for a simple animal model to understand sleep. Prog. Neurobiol. 61, 339–351 (2000).

    Article  CAS  Google Scholar 

  10. Nitz, D.A., van Swinderen, B., Tononi, G. & Greenspan, R.J. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12, 1934–1940 (2002).

    Article  CAS  Google Scholar 

  11. van Swinderen, B., Nitz, D.A. & Greenspan, R.J. Uncoupling of brain activity from movement defines arousal states in Drosophila. Curr. Biol. 14, 81–87 (2004).

    Article  CAS  Google Scholar 

  12. Shaw, P.J., Cirelli, C., Greenspan, R.J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).

    Article  CAS  Google Scholar 

  13. Hendricks, J.C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).

    Article  CAS  Google Scholar 

  14. Bushey, D., Huber, R., Tononi, G. & Cirelli, C. Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J. Neurosci. 27, 5384–5393 (2007).

    Article  CAS  Google Scholar 

  15. Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature 434, 1087–1092 (2005).

    Article  CAS  Google Scholar 

  16. Joiner, W.J., Crocker, A., White, B.H. & Sehgal, A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441, 757–760 (2006).

    Article  CAS  Google Scholar 

  17. Pitman, J.L., McGill, J.J., Keegan, K.P. & Allada, R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753–756 (2006).

    Article  CAS  Google Scholar 

  18. Ganguly-Fitzgerald, I., Donlea, J. & Shaw, P.J. Waking experience affects sleep need in Drosophila. Science 313, 1775–1781 (2006).

    Article  CAS  Google Scholar 

  19. Stilwell, G.E., Rocheleau, T. & Ffrench-Constant, R.H. GABA receptor minigene rescues insecticide resistance phenotypes in Drosophila. J. Mol. Biol. 253, 223–227 (1995).

    Article  CAS  Google Scholar 

  20. Ffrench-Constant, R.H., Rocheleau, T.A., Steichen, J.C. & Chalmers, A.E. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363, 449–451 (1993).

    Article  CAS  Google Scholar 

  21. Lee, D., Su, H. & O'Dowd, D.K. GABA receptors containing Rdl subunits mediate fast inhibitory synaptic transmission in Drosophila neurons. J. Neurosci. 23, 4625–4634 (2003).

    Article  CAS  Google Scholar 

  22. Aronstein, K., Auld, V. & Ffrench-Constant, R. Distribution of two GABA receptor–like subunits in the Drosophila CNS. Invert. Neurosci. 2, 115–120 (1996).

    Article  CAS  Google Scholar 

  23. Zhang, H.G., Ffrench-Constant, R.H. & Jackson, M.B. A unique amino acid of the Drosophila GABA receptor with influence on drug sensitivity by two mechanisms. J. Physiol. (Lond.) 479, 65–75 (1994).

    Article  CAS  Google Scholar 

  24. Brand, A.H. & Dormand, E.L. The GAL4 system as a tool for unraveling the mysteries of the Drosophila nervous system. Curr. Opin. Neurobiol. 5, 572–578 (1995).

    Article  CAS  Google Scholar 

  25. Hodge, J.J., Choi, J.C., O'Kane, C.J. & Griffith, L.C. Shaw potassium channel genes in Drosophila. J. Neurobiol. 63, 235–254 (2005).

    Article  CAS  Google Scholar 

  26. Ffrench-Constant, R.H., Mortlock, D.P., Shaffer, C.D., MacIntyre, R.J. & Roush, R.T. Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus. Proc. Natl. Acad. Sci. USA 88, 7209–7213 (1991).

    Article  CAS  Google Scholar 

  27. Ambrosio, A.F., Soares-Da-Silva, P., Carvalho, C.M. & Carvalho, A.P. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2–093, and BIA 2–024. Neurochem. Res. 27, 121–130 (2002).

    Article  CAS  Google Scholar 

  28. Granger, P. et al. Modulation of the gamma-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol. Pharmacol. 47, 1189–1196 (1995).

    CAS  PubMed  Google Scholar 

  29. Spina, E. & Perugi, G. Antiepileptic drugs: indications other than epilepsy. Epileptic Disord. 6, 57–75 (2004).

    PubMed  Google Scholar 

  30. Bazil, C.W. Effects of antiepileptic drugs on sleep structure: are all drugs equal? CNS Drugs 17, 719–728 (2003).

    Article  CAS  Google Scholar 

  31. Buhr, A. et al. Functional characterization of the new human GABA(A) receptor mutation beta3(R192H). Hum. Genet. 111, 154–160 (2002).

    Article  CAS  Google Scholar 

  32. Greenleaf, A.L., Borsett, L.M., Jiamachello, P.F. & Coulter, D.E. α-amanitin–resistant D. melanogaster with an altered RNA polymerase II. Cell 18, 613–622 (1979).

    Article  CAS  Google Scholar 

  33. Aronstein, K., Ode, P. & Ffrench-Constant, R. Direct comparison of PCR-based monitoring for cyclodiene resistance in Drosophila populations with insecticide bioassay. Pestic. Biochem. Physiol. 48, 229–233 (1994).

    Article  Google Scholar 

  34. Andretic, R. & Shaw, P.J. Essentials of sleep recordings in Drosophila: moving beyond sleep time. Methods Enzymol. 393, 759–772 (2005).

    Article  Google Scholar 

  35. Boileau, A.J., Baur, R., Sharkey, L.M., Sigel, E. & Czajkowski, C. The relative amount of cRNA coding for gamma2 subunits affects stimulation by benzodiazepines in GABA(A) receptors expressed in Xenopus oocytes. Neuropharmacology 43, 695–700 (2002).

    Article  CAS  Google Scholar 

  36. Priestley, C.M., Williamson, E.M., Wafford, K.A. & Sattelle, D.B. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA(A) receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharmacol. 140, 1363–1372 (2003).

    Article  CAS  Google Scholar 

  37. Brewster, M.E., Anderson, W.R., Estes, K.S. & Bodor, N. Development of aqueous parenteral formulations for carbamazepine through the use of modified cyclodextrins. J. Pharm. Sci. 80, 380–383 (1991).

    Article  CAS  Google Scholar 

  38. Masson, M., Sigurdardottir, B.V., Matthiasson, K. & Loftsson, T. Investigation of drug-cyclodextrin complexes by a phase-distribution method: some theoretical and practical considerations. Chem. Pharm. Bull. (Tokyo) 53, 958–964 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Marder, R. Allada and R. Greenspan for comments on the manuscript. This work was funded by a grant from the US Army (W81XWH-04-1-0158) to M.R. and L.C.G., and MH 067284 to L.C.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie C Griffith.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 (PDF 771 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agosto, J., Choi, J., Parisky, K. et al. Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci 11, 354–359 (2008). https://doi.org/10.1038/nn2046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2046

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing