Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On and off domains of geniculate afferents in cat primary visual cortex

Abstract

On- and off-center geniculate afferents form two major channels of visual processing that are thought to converge in the primary visual cortex. However, humans with severely reduced on responses can have normal visual acuity when tested in a white background, which indicates that off channels can function relatively independently from on channels under certain conditions. Consistent with this functional independence of channels, we demonstrate here that on- and off-center geniculate afferents segregate in different domains of the cat primary visual cortex and that off responses dominate the cortical representation of the area centralis. On average, 70% of the geniculate afferents converging at the same cortical domain had receptive fields of the same contrast polarity. Moreover, off-center afferents dominated the representation of the area centralis in the cortex, but not in the thalamus, indicating that on- and off-center afferents are balanced in number, but not in the amount of cortical territory that they cover.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recording from geniculate afferents in the muscimol-silenced cortex.
Figure 2: Recording from geniculate afferents in active cortex.
Figure 3: Off-center geniculate cells dominate the representation of the area centralis in cat visual cortex.
Figure 4: Most cortical simple cells are off-dominated in the cortical representation of the area centralis.
Figure 5: Off-center geniculate afferents cover more cortical territory than on-center geniculate afferents.

Similar content being viewed by others

References

  1. Chichilnisky, E.J. & Kalmar, R.S. Functional asymmetries in ON and OFF ganglion cells of primate retina. J. Neurosci. 22, 2737–2747 (2002).

    Article  CAS  Google Scholar 

  2. Renteria, R.C. et al. Intrinsic ON responses of the retinal OFF pathway are suppressed by the ON pathway. J. Neurosci. 26, 11857–11869 (2006).

    Article  CAS  Google Scholar 

  3. Peichl, L. Alpha and delta ganglion cells in the rat retina. J. Comp. Neurol. 286, 120–139 (1989).

    Article  CAS  Google Scholar 

  4. Peichl, L., Ott, H. & Boycott, B.B. Alpha ganglion cells in mammalian retinae. Proc. R. Soc. Lond. B 231, 169–197 (1987).

    Article  CAS  Google Scholar 

  5. Dacey, D.M. & Petersen, M.R. Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc. Natl. Acad. Sci. USA 89, 9666–9670 (1992).

    Article  CAS  Google Scholar 

  6. Wong, R.O. & Oakley, D.M. Changing patterns of spontaneous bursting activity of on and off retinal ganglion cells during development. Neuron 16, 1087–1095 (1996).

    Article  CAS  Google Scholar 

  7. Famiglietti, E.V., Jr, Kaneko, A. & Tachibana, M. Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science 198, 1267–1269 (1977).

    Article  Google Scholar 

  8. Nelson, R., Famiglietti, E.V., Jr & Kolb, H. Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. J. Neurophysiol. 41, 472–483 (1978).

    Article  CAS  Google Scholar 

  9. Schiller, P.H. & Malpeli, J.G. Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J. Neurophysiol. 41, 788–797 (1978).

    Article  CAS  Google Scholar 

  10. Bowling, D.B. & Wieniawa-Narkiewicz, E. The distribution of on- and off-centre X- and Y-like cells in the A layers of the cat's lateral geniculate nucleus. J. Physiol. (Lond.) 375, 561–572 (1986).

    Article  CAS  Google Scholar 

  11. Berman, N.E. & Payne, B.R. Modular organization of ON and OFF responses in the cat lateral geniculate nucleus. Neuroscience 32, 721–737 (1989).

    Article  CAS  Google Scholar 

  12. Stryker, M.P. & Zahs, K.R. On and off sublaminae in the lateral geniculate nucleus of the ferret. J. Neurosci. 3, 1943–1951 (1983).

    Article  CAS  Google Scholar 

  13. Conway, J.L. & Schiller, P.H. Laminar organization of tree shrew dorsal lateral geniculate nucleus. J. Neurophysiol. 50, 1330–1342 (1983).

    Article  CAS  Google Scholar 

  14. LeVay, S. & McConnell, S.K. ON and OFF layers in the lateral geniculate nucleus of the mink. Nature 300, 350–351 (1982).

    Article  CAS  Google Scholar 

  15. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  16. Reid, R.C. & Alonso, J.M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995).

    Article  CAS  Google Scholar 

  17. Tanaka, K. Cross-correlation analysis of geniculostriate neuronal relationships in cats. J. Neurophysiol. 49, 1303–1318 (1983).

    Article  CAS  Google Scholar 

  18. Zahs, K.R. & Stryker, M.P. Segregation of ON and OFF afferents to ferret visual cortex. J. Neurophysiol. 59, 1410–1429 (1988).

    Article  CAS  Google Scholar 

  19. McConnell, S.K. & LeVay, S. Segregation of on- and off-center afferents in mink visual cortex. Proc. Natl. Acad. Sci. USA 81, 1590–1593 (1984).

    Article  CAS  Google Scholar 

  20. Conley, M., Fitzpatrick, D. & Diamond, I.T. The laminar organization of the lateral geniculate body and the striate cortex in the tree shrew (Tupaia glis). J. Neurosci. 4, 171–197 (1984).

    Article  CAS  Google Scholar 

  21. Kretz, R., Rager, G. & Norton, T.T. Laminar organization of ON and OFF regions and ocular dominance in the striate cortex of the tree shrew (Tupaia belangeri). J. Comp. Neurol. 251, 135–145 (1986).

    Article  CAS  Google Scholar 

  22. Ringach, D.L. Haphazard wiring of simple receptive fields and orientation columns in visual cortex. J. Neurophysiol. 92, 468–476 (2004).

    Article  Google Scholar 

  23. Nakagama, H., Saito, T. & Tanaka, S. Effect of imbalance in activities between ON- and OFF-center LGN cells on orientation map formation. Biol. Cybern. 83, 85–92 (2000).

    Article  CAS  Google Scholar 

  24. Miller, K.D. Development of orientation columns via competition between ON- and OFF-center inputs. Neuroreport 3, 73–76 (1992).

    Article  CAS  Google Scholar 

  25. Miller, K.D. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs. J. Neurosci. 14, 409–441 (1994).

    Article  CAS  Google Scholar 

  26. Ringach, D.L. On the origin of the functional architecture of the cortex. PLoS ONE 2, e251 (2007).

    Article  Google Scholar 

  27. Swadlow, H.A., Gusev, A.G. & Bezdudnaya, T. Activation of a cortical column by a thalamocortical impulse. J. Neurosci. 22, 7766–7773 (2002).

    Article  CAS  Google Scholar 

  28. Hochstein, S. & Shapley, R.M. Quantitative analysis of retinal ganglion cell classifications. J. Physiol. (Lond.) 262, 237–264 (1976).

    Article  CAS  Google Scholar 

  29. Humphrey, A.L., Sur, M., Uhlrich, D.J. & Sherman, S.M. Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J. Comp. Neurol. 233, 159–189 (1985).

    Article  CAS  Google Scholar 

  30. Freund, T.F., Martin, K.A. & Whitteridge, D. Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y- type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements. J. Comp. Neurol. 242, 263–274 (1985).

    Article  CAS  Google Scholar 

  31. Gilbert, C.D. & Wiesel, T.N. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280, 120–125 (1979).

    Article  CAS  Google Scholar 

  32. DeAngelis, G.C., Ghose, G.M., Ohzawa, I. & Freeman, R.D. Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J. Neurosci. 19, 4046–4064 (1999).

    Article  CAS  Google Scholar 

  33. Gheorghita, F., Kraftsik, R., Dubois, R. & Welker, E. Structural basis for map formation in the thalamocortical pathway of the barrelless mouse. J. Neurosci. 26, 10057–10067 (2006).

    Article  CAS  Google Scholar 

  34. Aronov, D., Reich, D.S., Mechler, F. & Victor, J.D. Neural coding of spatial phase in V1 of the macaque monkey. J. Neurophysiol. 89, 3304–3327 (2003).

    Article  Google Scholar 

  35. Chatterjee, S. & Callaway, E.M. Parallel colour-opponent pathways to primary visual cortex. Nature 426, 668–671 (2003).

    Article  CAS  Google Scholar 

  36. Albus, K. & Wolf, W. Early post-natal development of neuronal function in the kitten's visual cortex: a laminar analysis. J. Physiol. (Lond.) 348, 153–185 (1984).

    Article  CAS  Google Scholar 

  37. Raczkowski, D. & Fitzpatrick, D. Terminal arbors of individual, physiologically identified geniculocortical axons in the tree shrew's striate cortex. J. Comp. Neurol. 302, 500–514 (1990).

    Article  CAS  Google Scholar 

  38. Dryja, T.P. et al. Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc. Natl. Acad. Sci. USA 102, 4884–4889 (2005).

    Article  CAS  Google Scholar 

  39. Westheimer, G. Visual acuity with reversed-contrast charts. I. Theoretical and psychophysical investigations. Optom. Vis. Sci. 80, 745–748 (2003).

    Article  Google Scholar 

  40. Westheimer, G., Chu, P., Huang, W., Tran, T. & Dister, R. Visual acuity with reversed-contrast charts: II. Clinical investigation. Optom. Vis. Sci. 80, 749–752 (2003).

    Article  Google Scholar 

  41. Zemon, V., Gordon, J. & Welch, J. Asymmetries in ON and OFF visual pathways of humans revealed using contrast-evoked cortical potentials. Vis. Neurosci. 1, 145–150 (1988).

    Article  CAS  Google Scholar 

  42. Wehrhahn, C. & Rapf, D. ON- and OFF-pathways form separate neural substrates for motion perception: psychophysical evidence. J. Neurosci. 12, 2247–2250 (1992).

    Article  CAS  Google Scholar 

  43. Schiller, P.H., Sandell, J.H. & Maunsell, J.H. Functions of the ON and OFF channels of the visual system. Nature 322, 824–825 (1986).

    Article  CAS  Google Scholar 

  44. Peters, A. & Payne, B.R. Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex 3, 69–78 (1993).

    Article  CAS  Google Scholar 

  45. Alonso, J.M., Usrey, W.M. & Reid, R.C. Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J. Neurosci. 21, 4002–4015 (2001).

    Article  CAS  Google Scholar 

  46. Benucci, A., Frazor, R.A. & Carandini, M. Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55, 103–117 (2007).

    Article  CAS  Google Scholar 

  47. Chapman, B., Zahs, K.R. & Stryker, M.P. Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. J. Neurosci. 11, 1347–1358 (1991).

    Article  CAS  Google Scholar 

  48. Nicholson, C. & Freeman, J.A. Theory of current source–density analysis and determination of conductivity tensor for anuran cerebellum. J. Neurophysiol. 38, 356–368 (1975).

    Article  CAS  Google Scholar 

  49. Swadlow, H.A. & Gusev, A.G. The influence of single VB thalamocortical impulses on barrel columns of rabbit somatosensory cortex. J. Neurophysiol. 83, 2802–2813 (2000).

    Article  CAS  Google Scholar 

  50. Pettersen, K.H., Devor, A., Ulbert, I., Dale, A.M. & Einevoll, G.T. Current source–density estimation based on inversion of electrostatic forward solution. Effects of finite extent of neuronal activity and conductivity discontinuities. J. Neurosci. Methods 154, 116–133 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (EY02874 to M.P.S., MH-64024 to H.A.S. and EY05253 to J.-M.A.) and by the SUNY Research Foundation (J.-M.A.).

Author information

Authors and Affiliations

Authors

Contributions

J.A.G., E.S.R. and M.P.S. designed, executed and analyzed the studies of muscimol-silenced cortex. J.Z.J., C.W., C.-I.Y., H.A.S. and J.-M.A. designed, executed and analyzed the studies of the active cortex. All authors participated in the writing of the manuscript.

Corresponding author

Correspondence to Jose-Manuel Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, J., Weng, C., Yeh, CI. et al. On and off domains of geniculate afferents in cat primary visual cortex. Nat Neurosci 11, 88–94 (2008). https://doi.org/10.1038/nn2029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing