The neural correlates of subjective value during intertemporal choice

This article has been updated

Abstract

Neuroimaging studies of decision-making have generally related neural activity to objective measures (such as reward magnitude, probability or delay), despite choice preferences being subjective. However, economic theories posit that decision-makers behave as though different options have different subjective values. Here we use functional magnetic resonance imaging to show that neural activity in several brain regions—particularly the ventral striatum, medial prefrontal cortex and posterior cingulate cortex—tracks the revealed subjective value of delayed monetary rewards. This similarity provides unambiguous evidence that the subjective value of potential rewards is explicitly represented in the human brain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Intertemporal choice task.
Figure 2: Subject-specific discount functions.
Figure 3: Group analysis showing areas in which activity is correlated with subjective value.
Figure 4: Single-subject analyses showing areas in which activity correlated with subjective value.
Figure 5: Single-subject time courses and neural discount functions.
Figure 6: Psychometric-neurometric comparisons.
Figure 7: Single-subject example of unbiased value ROIs and resulting neural discount functions.
Figure 8: Neural activity tracks subjective value, and not a more impulsive (β) or more patient (δ) estimate of value.

Change history

  • 11 November 2007

    In the version of this article initially published online, the URL for reference 39 was incorrect. The correct URL should be http://www.princeton.edu/~pesendor/mindless.pdf. The error has been corrected for all versions of the article.

References

  1. 1

    Weber, E.H. De Pulsu, Resorptione, Audita et Tactu. Annotationes Anatomicae et Physiologicae. (C.F. Koehler, Lipsiae, 1834).

    Google Scholar 

  2. 2

    Fechner, G.T. Elemente der Psychophysik (Breitkopf & Hartel, Leipzig, 1860).

    Google Scholar 

  3. 3

    Stevens, S. Neural events and the psychophysical law. Science 170, 1043–1050 (1970).

    CAS  Article  Google Scholar 

  4. 4

    Bernoulli, D. The Works (Birkhauser, Boston, 1982).

    Google Scholar 

  5. 5

    Platt, M.L. & Glimcher, P.W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Abler, B., Walter, H., Erk, S., Kammerer, H. & Spitzer, M. Prediction error as a linear function of reward probability is coded in human nucleus accumbens. Neuroimage 31, 790–795 (2006).

    Article  Google Scholar 

  7. 7

    Cromwell, H.C. & Schultz, W. Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. J. Neurophysiol. 89, 2823–2838 (2003).

    Article  Google Scholar 

  8. 8

    Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C. & Fiez, J.A. Tracking the hemodynamic responses to reward and punishment in the striatum. J. Neurophysiol. 84, 3072–3077 (2000).

    CAS  Article  Google Scholar 

  9. 9

    McCoy, A.N., Crowley, J.C., Haghighian, G., Dean, H.L. & Platt, M.L. Saccade reward signals in posterior cingulate cortex. Neuron 40, 1031–1040 (2003).

    CAS  Article  Google Scholar 

  10. 10

    O'Doherty, J., Critchley, H., Deichmann, R. & Dolan, R.J. Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. J. Neurosci. 23, 7931–7939 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Breiter, H.C., Aharon, I., Kahneman, D., Dale, A. & Shizgal, P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30, 619–639 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Nieuwenhuis, S. et al. Activity in human reward-sensitive brain areas is strongly context dependent. Neuroimage 25, 1302–1309 (2005).

    Article  Google Scholar 

  13. 13

    Rogers, R.D. et al. Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol. Psychiatry 55, 594–602 (2004).

    Article  Google Scholar 

  14. 14

    Kuhnen, C.M. & Knutson, B. The neural basis of financial risk taking. Neuron 47, 763–770 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. Distributed neural representation of expected value. J. Neurosci. 25, 4806–4812 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Bowman, E.M., Aigner, T.G. & Richmond, B.J. Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. J. Neurophysiol. 75, 1061–1073 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Cromwell, H.C., Hassani, O.K. & Schultz, W. Relative reward processing in primate striatum. Exp. Brain Res. 162, 520–525 (2005).

    Article  Google Scholar 

  18. 18

    McCoy, A.N. & Platt, M.L. Risk-sensitive neurons in macaque posterior cingulate cortex. Nat. Neurosci. 8, 1220–1227 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Dorris, M.C. & Glimcher, P.W. Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron 44, 365–378 (2004).

    CAS  Article  Google Scholar 

  20. 20

    McClure, S.M. et al. Neural correlates of behavioral preference for culturally familiar drinks. Neuron 44, 379–387 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Gottfried, J.A., O'Doherty, J. & Dolan, R.J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Tanaka, S.C. et al. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat. Neurosci. 7, 887–893 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Daw, N.D., O'Doherty, J.P., Dayan, P., Seymour, B. & Dolan, R.J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).

    CAS  Article  Google Scholar 

  25. 25

    O'Doherty, J.P., Buchanan, T.W., Seymour, B. & Dolan, R.J. Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum. Neuron 49, 157–166 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Johnson, K.O., Hsiao, S.S. & Yoshioka, T. Neural coding and the basic law of psychophysics. Neuroscientist 8, 111–121 (2002).

    Article  Google Scholar 

  27. 27

    Parker, A.J. & Newsome, W.T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Werner, G. & Mountcastle, V.B. Quantitative relations between mechanical stimuli to the skin and neural responses evoked by them. in The Skin Senses (ed. Kenshalo, D.R.) 112–138 (Charles C Thomas Publisher, Springfield, Illinois, 1968).

    Google Scholar 

  29. 29

    Newsome, W.T., Britten, K.H. & Movshon, J.A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    CAS  Article  Google Scholar 

  30. 30

    Frederick, S., Loewenstein, G. & O'Donoghue, T. Time discounting and time preference: a critical review. J. Econ. Lit. 40, 351–401 (2002).

    Article  Google Scholar 

  31. 31

    Mazur, J.E. An adjusting procedure for studying delayed reinforcement. in Quantitative Analysis of Behavior: The Effects of Delay and Intervening Events on Reinforcement Value (eds. Commons, M.L., Mazur, J.E., Nevin, J.A. & Rachlin, H.) 55–73 (Lawrence Erlbaum Associates, Publishers, Hillsdale, New Jersey, 1987).

    Google Scholar 

  32. 32

    Laibson, D. Golden eggs and hyperbolic discounting. Q. J. Econ. 12, 443–477 (1997).

    Article  Google Scholar 

  33. 33

    Green, L. & Myerson, J. A discounting framework for choice with delayed and probabilistic rewards. Psychol. Bull. 130, 769–792 (2004).

    Article  Google Scholar 

  34. 34

    Benhabib, J., Bisin, A. & Schotter, A. Present-bias, quasi-hyperbolic discounting and fixed costs. Working Paper (New York University Department of Economics, New York, 2006) <http://www.econ.nyu.edu/user/benhabib/pshype0106.pdf>.

    Google Scholar 

  35. 35

    McClure, S.M., Laibson, D.I., Loewenstein, G. & Cohen, J.D. Separate neural systems value immediate and delayed monetary rewards. Science 306, 503–507 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Teller, D.Y. & Pugh, E.N. Linking propositions in color vision. in Colour Vision: Physiology and Psychophysics (eds. Mollon, J.D. & Sharpe, L.T.) 577–589 (Academic Press, New York, 1983).

    Google Scholar 

  37. 37

    von Neumann, J. & Morgenstern, O. The Theory of Games and Economic Behavior (Princeton University Press, Princeton, New Jersey, 1944).

    Google Scholar 

  38. 38

    Samuelson, P.A. Foundations of Economic Analysis (Harvard University Press, Cambridge, Massachusetts, 1947).

    Google Scholar 

  39. 39

    Gul, F. & Pesendorfer, W. The case for mindless economics. Working Paper (Princeton University Department of Economics, Princeton, New Jersey, 2005) <http://www.princeton.edu/~pesendor/mindless.pdf>.

    Google Scholar 

  40. 40

    Gusnard, D.A. & Raichle, M.E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694 (2001).

    CAS  Article  Google Scholar 

  41. 41

    Zysset, S., Huber, O., Ferstl, E. & von Cramon, D.Y. The anterior frontomedian cortex and evaluative judgment: an fMRI study. Neuroimage 15, 983–991 (2002).

    Article  Google Scholar 

  42. 42

    Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. & Camerer, C.F. Neural systems responding to degrees of uncertainty in human decision-making. Science 310, 1680–1683 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Paulus, M.P. & Frank, L.R. Anterior cingulate activity modulates nonlinear decision weight function of uncertain prospects. Neuroimage 30, 668–677 (2006).

    Article  Google Scholar 

  44. 44

    Tom, S.M., Fox, C.R., Trepel, C. & Poldrack, R.A. The neural basis of loss aversion in decision-making under risk. Science 315, 515–518 (2007).

    CAS  Article  Google Scholar 

  45. 45

    Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).

    CAS  Article  Google Scholar 

  46. 46

    Shadlen, M.N. & Newsome, W.T. Motion perception: seeing and deciding. Proc. Natl. Acad. Sci. USA 93, 628–633 (1996).

    CAS  Article  Google Scholar 

  47. 47

    Collier, M. & Williams, M.B. Eliciting individual discount rates. Exp. Econ. 2, 107–127 (1999).

    Article  Google Scholar 

  48. 48

    Camerer, C.F. & Hogarth, R.M. The effects of financial incentives in experiments: a review and capital-labor-production framework. J. Risk Uncertain. 19, 7–42 (1999).

    Article  Google Scholar 

  49. 49

    Smith, V.L. & Walker, J.M. Monetary rewards and decision cost in experimental economics. Econ. Inq. 31, 245–261 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Bisin, A. Caplin, M. Grantner, D. Heeger and I. Levy for their comments on earlier versions of this paper. This work was supported by grants from the National Institutes of Health (F32-MH75544 to J.W.K. and R01-NS054775 to P.W.G.), the McDonnell Foundation (to P.W.G.) and the Seaver Foundation.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Joseph W Kable or Paul W Glimcher.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Tables 1–11 and Methods (PDF 3846 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kable, J., Glimcher, P. The neural correlates of subjective value during intertemporal choice. Nat Neurosci 10, 1625–1633 (2007). https://doi.org/10.1038/nn2007

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing