Glial regulation of the cerebral microvasculature

Abstract

The brain is a heterogeneous organ with regionally varied and constantly changing energetic needs. Blood vessels in the brain are equipped with control mechanisms that match oxygen and glucose delivery through blood flow with the local metabolic demands that are imposed by neural activity. However, the cellular bases of this mechanism have remained elusive. A major advance has been the demonstration that astrocytes, cells with extensive contacts with both synapses and cerebral blood vessels, participate in the increases in flow evoked by synaptic activity. Their organization in nonoverlapping spatial domains indicates that they are uniquely positioned to shape the spatial distribution of the vascular responses that are evoked by neural activity. Astrocytic calcium is an important determinant of microvascular function and may regulate flow independently of synaptic activity. The involvement of astrocytes in neurovascular coupling has broad implications for the interpretation of functional imaging signals and for the understanding of brain diseases that are associated with neurovascular dysfunction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Gliovascular interactions through the ages.
Figure 2: Astrocytes are closely related to cerebral blood vessels and synapses.
Figure 3: Astrocytes are central to neurovascular signaling.

References

  1. 1

    Hossmann, K.A. Pathophysiology and therapy of experimental stroke. Cell. Mol. Neurobiol. 26, 1057–1083 (2006).

  2. 2

    Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

  3. 3

    Raichle, M.E. & Mintun, M.A. Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–476 (2006).

  4. 4

    Lauritzen, M. Opinion. Reading vascular changes in brain imaging: is dendritic calcium the key? Nat. Rev. Neurosci. 6, 77–85 (2005).

  5. 5

    Nedergaard, M., Ransom, B.R. & Goldman, S.A. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530 (2003).

  6. 6

    Iadecola, C. Astrocytes take center stage in salt sensing. Neuron 54, 3–5 (2007).

  7. 7

    Williams, L.R. & Leggett, R.W. Reference values for resting blood flow to organs of man. Clin. Phys. Physiol. Meas. 10, 187–217 (1989).

  8. 8

    Roggendorf, W., Cervos-Navarro, J. & Matakas, F. The ultrastructural criteria of intracerebral arterioles. in The Cerebral Vessel Wall (ed. Cervos-Navarro, J.) 23–31 (Raven Press, New York, 1976).

  9. 9

    Jones, E.G. On the mode of entry of blood vessels into the cerebral cortex. J. Anat. 106, 507–520 (1970).

  10. 10

    Peters, A., Palay, S. & Webster, H.D. The Fine Structure of the Nervous System, 494 (Oxford University Press, New York, 1991).

  11. 11

    Mathieu-Costello, O., Agey, P.J., Wu, L., Hang, J. & Adair, T.H. Capillary-to-fiber surface ratio in rat fast-twitch hindlimb muscles after chronic electrical stimulation. J. Appl. Physiol. 80, 904–909 (1996).

  12. 12

    Klein, B., Kuschinsky, W., Schrock, H. & Vetterlein, F. Interdependency of local capillary density, blood flow and metabolism in rat brains. Am. J. Physiol. 251, H1333–H1340 (1986).

  13. 13

    Faraci, F.M. & Heistad, H.H. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ. Res. 66, 8–17 (1990).

  14. 14

    Ngai, A.C., Ko, K.R., Morii, S. & Winn, H.R. Effect of sciatic nerve stimulation on pial arterioles in rats. Am. J. Physiol. 254, H133–H139 (1988).

  15. 15

    Silva, A.C., Lee, S.P., Iadecola, C. & Kim, S.G. Early temporal characteristics of cerebral blood flow and deoxyhemoglobin changes during somatosensory stimulation. J. Cereb. Blood Flow Metab. 20, 201–206 (2000).

  16. 16

    Cox, S.B., Woolsey, T.A. & Rovainen, C.M. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J. Cereb. Blood Flow Metab. 13, 899–913 (1993).

  17. 17

    Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2006).

  18. 18

    Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).

  19. 19

    Vaucher, E. & Hamel, E. Cholinergic basal forebrain neurons project to cortical microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immunocytochemistry. J. Neurosci. 15, 7427–7441 (1995).

  20. 20

    Harris, K.M., Jensen, F.E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

  21. 21

    Nedergaard, M., Takano, T. & Hansen, A.J. Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 3, 748–755 (2002).

  22. 22

    Barres, B.A. & Smith, S.J. Neurobiology. Cholesterol—making or breaking the synapse. Science 294, 1296–1297 (2001).

  23. 23

    Simard, M., Arcuino, G., Takano, T., Liu, Q.S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci. 23, 9254–9262 (2003).

  24. 24

    Kacem, K., Lacombe, P., Seylaz, J. & Bonvento, G. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23, 1–10 (1998).

  25. 25

    Pekny, M. & Pekna, M. Astrocyte intermediate filaments in CNS pathologies and regeneration. J. Pathol. 204, 428–437 (2004).

  26. 26

    Halassa, M.M., Fellin, T., Takano, H., Dong, J.H. & Haydon, P.G. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477 (2007).

  27. 27

    Bushong, E.A., Martone, M.E., Jones, Y.Z. & Ellisman, M.H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002).

  28. 28

    Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003).

  29. 29

    Paulson, O.B. & Newman, E.A. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237, 896–898 (1987).

  30. 30

    Metea, M.R., Kofuji, P. & Newman, E.A. Neurovascular coupling is not mediated by potassium siphoning from glial cells. J. Neurosci. 27, 2468–2471 (2007).

  31. 31

    Filosa, J.A. et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat. Neurosci. 9, 1397–1403 (2006).

  32. 32

    Hamel, E. Perivascular nerves and the regulation of cerebrovascular tone. J. Appl. Physiol. 100, 1059–1064 (2006).

  33. 33

    Rancillac, A. et al. Glutamatergic control of microvascular tone by distinct GABA neurons in the cerebellum. J. Neurosci. 26, 6997–7006 (2006).

  34. 34

    Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949 (2004).

  35. 35

    Cohen, Z., Bonvento, G., Lacombe, P. & Hamel, E. Serotonin in the regulation of brain microcirculation. Prog. Neurobiol. 50, 335–362 (1996).

  36. 36

    Reis, D. & Iadecola, C. Intrinsic central regulation of cerebral blood flow and metabolism in relation to volume transmission. in Volume Transmission in the Brain (eds. Fuxe, K. & Agnati, L.) 523–538 (Raven Press, New York, 1991).

  37. 37

    Metea, M.R. & Newman, E.A. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci. 26, 2862–2870 (2006).

  38. 38

    Mulligan, S.J. & MacVicar, B.A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004).

  39. 39

    Winship, I.R., Plaa, N. & Murphy, T.H. Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J. Neurosci. 27, 6268–6272 (2007).

  40. 40

    Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816–823 (2006).

  41. 41

    Volterra, A. & Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640 (2005).

  42. 42

    Nett, W.J., Oloff, S.H. & McCarthy, K.D. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87, 528–537 (2002).

  43. 43

    Parri, H.R., Gould, T.M. & Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 4, 803–812 (2001).

  44. 44

    Devor, A. et al. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level–dependent signal. J. Neurosci. 27, 4452–4459 (2007).

  45. 45

    Peppiatt, C.M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).

  46. 46

    Tamaki, K., Mayhan, W. & Heistad, D. Effects of vasodilator stimuli on resistance of large and small cerebral vessels. Am. J. Physiol. 251, H1176–H1182 (1986).

  47. 47

    Xu, H.L. & Pelligrino, D.A. ATP release and hydrolysis contributes to pial arteriolar dilations elicited by neuronal activation. Exp. Physiol. 92, 647–651 (2007).

  48. 48

    Segal, S.S. Regulation of blood flow in the microcirculation. Microcirculation 12, 33–45 (2005).

  49. 49

    Leffler, C.W., Parfenova, H., Fedinec, A.L., Basuroy, S. & Tcheranova, D. Contributions of astrocytes and CO to pial arteriolar dilation to glutamate in newborn pigs. Am. J. Physiol. Heart Circ. Physiol. 291, H2897–H2904 (2006).

  50. 50

    Chaban, V.V., Lakhter, A.J. & Micevych, P. A membrane estrogen receptor mediates intracellular calcium release in astrocytes. Endocrinology 145, 3788–3795 (2004).

  51. 51

    Dreher, J.C. et al. Menstrual cycle phase modulates reward-related neural function in women. Proc. Natl. Acad. Sci. USA 104, 2465–2470 (2007).

  52. 52

    Attwell, D. & Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

  53. 53

    Lebon, V. et al. Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J. Neurosci. 22, 1523–1531 (2002).

  54. 54

    Oz, G. et al. Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J. Neurosci. 24, 11273–11279 (2004).

  55. 55

    Lovatt, D. et al. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J. Neurosci. (in the press) (2007).

  56. 56

    Cotrina, M.L. et al. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA 95, 15735–15740 (1998).

  57. 57

    Zhang, J.M. et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982 (2003).

  58. 58

    Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

  59. 59

    Del Valle-Rodriguez, A. et al. Metabotropic Ca2+ channel–induced Ca2+ release and ATP-dependent facilitation of arterial myocyte contraction. Proc. Natl. Acad. Sci. USA 103, 4316–4321 (2006).

  60. 60

    Berridge, M.J., Bootman, M.D. & Roderick, H.L. Calcium signaling: dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

  61. 61

    Dunwiddie, T.V. & Masino, S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55 (2001).

  62. 62

    Chuquet, J., Hollender, L. & Nimchinsky, E.A. High-resolution in vivo imaging of the neurovascular unit during spreading depression. J. Neurosci. 27, 4036–4044 (2007).

  63. 63

    Takano, T., Han, X., Deane, R., Zlokovic, B. & Nedergaard, M. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer's disease. Ann. NY Acad. Sci. 1097, 40–50 (2007).

  64. 64

    Faraci, F.M. & Heistad, D.D. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol. Rev. 78, 53–97 (1998).

  65. 65

    Cipolla, M.J. Cerebrovascular function in pregnancy and eclampsia. Hypertension 50, 14–24 (2007).

  66. 66

    Hill, M.A., Sun, Z., Martinez-Lemus, L. & Meininger, G.A. New technologies for dissecting the arteriolar myogenic response. Trends Pharmacol. Sci. 28, 308–315 (2007).

  67. 67

    Fleming, I. & Busse, R. Endothelium-derived epoxyeicosatrienoic acids and vascular function. Hypertension 47, 629–633 (2006).

  68. 68

    Iadecola, C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci. 16, 206–214 (1993).

  69. 69

    Astrup, J. et al. Evidence against H+ and K+ as main factors for the control of cerebral blood flow: a microelectrode study. Ciba Found. Symp. 56, 313–337 (1978).

  70. 70

    Frahm, J., Kruger, G., Merboldt, K.D. & Kleinschmidt, A. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn. Reson. Med. 35, 143–148 (1996).

  71. 71

    Ances, B.M. Coupling of changes in cerebral blood flow with neural activity: what must initially dip must come back up. J. Cereb. Blood Flow Metab. 24, 1–6 (2004).

  72. 72

    Thompson, J.K., Peterson, M.R. & Freeman, R.D. Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299, 1070–1072 (2003).

  73. 73

    Ances, B.M., Buerk, D.G., Greenberg, J.H. & Detre, J.A. Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats. Neurosci. Lett. 306, 106–110 (2001).

  74. 74

    Mintun, M.A. et al. Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc. Natl. Acad. Sci. USA 98, 6859–6864 (2001).

  75. 75

    Rubio, R., Berne, R.M., Bockman, E.L. & Curnish, R.R. Relationship between adenosine concentration and oxygen supply in rat brain. Am. J. Physiol. 228, 1896–1902 (1975).

  76. 76

    Phillis, J.W. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling and KATP channels. Crit. Rev. Neurobiol. 16, 237–270 (2004).

  77. 77

    Iadecola, C. & Niwa, K. Nitric oxide. in Cerebral Blood Flow and Metabolism (eds. Edvinsson, L. & Krause, D.N.) 295–310 (Lippincott, Williams and Wilkins, Philadelphia, 2002).

  78. 78

    Yang, G., Huard, J.M., Beitz, A.J., Ross, M.E. & Iadecola, C. Stellate neurons mediate functional hyperemia in the cerebellar molecular layer. J. Neurosci. 20, 6968–6973 (2000).

  79. 79

    Yang, G., Zhang, Y., Ross, M.E. & Iadecola, C. Attenuation of activity-induced increases in cerebellar blood flow in mice lacking neuronal nitric oxide synthase. Am. J. Physiol. Heart Circ. Physiol. 285, H298–H304 (2003).

  80. 80

    Wang, H., Hitron, I.M., Iadecola, C. & Pickel, V.M. Synaptic and vascular associations of neurons containing cyclooxygenase-2 and nitric oxide synthase in rat somatosensory cortex. Cereb. Cortex 15, 1250–1260 (2005).

  81. 81

    Niwa, K., Araki, E., Morham, S.G., Ross, M.E. & Iadecola, C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J. Neurosci. 20, 763–770 (2000).

  82. 82

    Niwa, K., Haensel, C., Ross, M.E. & Iadecola, C. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ. Res. 88, 600–608 (2001).

  83. 83

    Koehler, R.C., Gebremedhin, D. & Harder, D.R. Role of astrocytes in cerebrovascular regulation. J. Appl. Physiol. 100, 307–317 (2006).

  84. 84

    Sagher, O. et al. Live computerized videomicroscopy of cerebral microvessels in brain slices. J. Cereb. Blood Flow Metab. 13, 676–682 (1993).

  85. 85

    Harder, D.R. Increased sensitivity of cat cerebral arteries to serotonin upon elevation of transmural pressure. Pflugers Arch. 411, 698–700 (1988).

  86. 86

    Garcia-Roldan, J.L. & Bevan, J.A. Flow-induced constriction and dilation of cerebral resistance arteries. Circ. Res. 66, 1445–1448 (1990).

  87. 87

    Armstead, W.M., Mirro, R., Busija, D.W. & Leffler, C.W. Vascular responses to vasopressin are tone-dependent in the cerebral circulation of the newborn pig. Circ. Res. 64, 136–144 (1989).

  88. 88

    Sloan, T.B. Anesthetics and the brain. Anesthesiol. Clin. North America 20, 265–292 (2002).

  89. 89

    Lindauer, U., Villringer, A. & Dirnagl, U. Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics. Am. J. Physiol. 264, H1223–H1228 (1993).

  90. 90

    Ueki, M., Mies, G. & Hossmann, K.A. Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol. Scand. 36, 318–322 (1992).

  91. 91

    Sicard, K. et al. Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J. Cereb. Blood Flow Metab. 23, 472–481 (2003).

  92. 92

    Martin, C., Martindale, J., Berwick, J. & Mayhew, J. Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage 32, 33–48 (2006).

  93. 93

    Ferezou, I., Bolea, S. & Petersen, C.C. Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50, 617–629 (2006).

  94. 94

    Golgi, C. Sulla Fina Anatomia degli Organi Centrali del Sistema Nervoso (Hoepli, Milano, 1886).

  95. 95

    Locovei, S., Bao, L. & Dahl, G. Pannexin 1 in erythrocytes: function without a gap. Proc. Natl. Acad. Sci. USA 103, 7655–7659 (2006).

  96. 96

    Marrelli, S.P. Mechanisms of endothelial P2Y(1)- and P2Y(2)-mediated vasodilatation involve differential [Ca2+]i responses. Am. J. Physiol. Heart Circ. Physiol. 281, H1759–H1766 (2001).

Download references

Acknowledgements

T. Takano and J. Pierce provided invaluable help with the figures. This work was supported by grants from the US National Institutes of Health (NS37853 and HL18974 to C.I., and NS56188 and NS50315 to M.N.).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Costantino Iadecola or Maiken Nedergaard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iadecola, C., Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat Neurosci 10, 1369–1376 (2007). https://doi.org/10.1038/nn2003

Download citation

Further reading