Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex

This article has been updated

Abstract

The amygdaloid complex consists of diverse nuclei that belong to distinct functional systems, yet many issues about its development are poorly understood. Here, we identify a stream of migrating cells that form specific amygdaloid nuclei in mice. In utero electroporation showed that this caudal amygdaloid stream (CAS) originated in a unique domain at the caudal telencephalic pole that is contiguous with the dorsal pallium, which was previously thought to generate only neocortical cells. The CAS and the neocortex share mechanisms for specification (transcription factors Tbr1, Lhx2 and Emx1/2) and migration (reelin and Cdk5). Reelin, a critical cue for migration in the neocortex, and Cdk5, which is specifically required for migration along radial glia in the neocortex, were both selectively required for the normal migration of the CAS, but not for that of other amygdaloid nuclei. This is first evidence of a dorsal pallial contribution to the amygdala, demonstrating a developmental and mechanistic link between the amygdala and the neocortex.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A stream of amygdaloid cells from the caudal telencephalon.
Figure 2: In utero electroporation identifies a unique caudal origin for the CAS.
Figure 3: Multiple pallial markers identify the CAS and the nLOT2 emerging from the caudal telencephalic neuroepithelium.
Figure 4: The CAS originates in the dorsal pallium.
Figure 5: The CAS migrates in a reelin-free corridor.
Figure 6: The CAS migration is abnormal in the reeler mutant.
Figure 7: Radial glia and the CAS trajectory.
Figure 8: Migration of the CAS requires Cdk5.

Change history

  • 19 August 2007

    *NOTE: In the version of this article initially published online, ref. 42 refers to a different paper than the one that the authors intended to cite. The correct citation is Broccoli, V. Evolutionary developmental biology of the cerebral cortex. Bioessays 21, 974-977 (1999). The error has been corrected for all versions of the article.

References

  1. Puelles, L. et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6 and Tbr-1. J. Comp. Neurol. 424, 409–438 (2000).

    Article  CAS  Google Scholar 

  2. Nery, S., Fishell, G. & Corbin, J.G. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat. Neurosci. 5, 1279–1287 (2002).

    Article  CAS  Google Scholar 

  3. Yun, K., Potter, S. & Rubenstein, J.L. Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128, 193–205 (2001).

    CAS  PubMed  Google Scholar 

  4. Medina, L. et al. Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8 and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex. J. Comp. Neurol. 474, 504–523 (2004).

    Article  Google Scholar 

  5. Stenman, J., Yu, R.T., Evans, R.M. & Campbell, K. Tlx and Pax6 cooperate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon. Development 130, 1113–1122 (2003).

    Article  CAS  Google Scholar 

  6. Tole, S., Remedios, R., Saha, B. & Stoykova, A. Selective requirement of Pax6, but not Emx2, in the specification and development of several nuclei of the amygdaloid complex. J. Neurosci. 25, 2753–2760 (2005).

    Article  CAS  Google Scholar 

  7. Alheid, G.F., de Olmos, J. & Beltramino, C.A. Amygdala and extended amygdala in the rat nervous system. in The Rat Nervous System, 2nd ed. (ed. Gaxinos, P.) 495–578 (Academic Press, San Diego, California, 1995).

    Google Scholar 

  8. McDonald, A.J. Is there an amygdala and how far does it extend? An anatomical perspective. Ann. NY Acad. Sci. 985, 1–21 (2003).

    Article  Google Scholar 

  9. Price, J.L. An autoradiographic study of complementary laminar pattern of termination of afferent fibres to the olfactory cortex. J. Comp. Neurol. 150, 87–108 (1973).

    Article  CAS  Google Scholar 

  10. Luskin, M.B. & Price, J.L. The topographic organization of associational fibres of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J. Comp. Neurol. 216, 264–291 (1983).

    Article  CAS  Google Scholar 

  11. Martinez-Garcia, F., Martinez-Marcos, A. & Lanuza, E. The pallial amygdala of amniote vertebrates: evolution of the concept, evolution of the structure. Brain Res. Bull. 57, 463–469 (2002).

    Article  Google Scholar 

  12. Santiago, A.C. & Shammah-Lagnado, S.J. Efferent connections of the nucleus of the lateral olfactory tract in the rat. J. Comp. Neurol. 471, 314–332 (2004).

    Article  Google Scholar 

  13. Remedios, R., Subramanian, L. & Tole, S. LIM genes parcellate the embryonic amygdala and regulate its development. J. Neurosci. 24, 6986–6990 (2004).

    Article  CAS  Google Scholar 

  14. McConnell, J. & Angevine, J.B., Jr. Time of origin in the amygdaloid complex of the mouse. Brain Res. 272, 150–156 (1983).

    Article  CAS  Google Scholar 

  15. Hevner, R.F. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001).

    Article  CAS  Google Scholar 

  16. Shinozaki, K. et al. Absence of Cajal-Retzius cells and subplate neurons associated with defects of tangential cell migration from ganglionic eminence in Emx1/2 double mutant cerebral cortex. Development 129, 3479–3492 (2002).

    CAS  Google Scholar 

  17. Bulchand, S., Grove, E.A., Porter, F.D. & Tole, S. LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem. Mech. Dev. 100, 165–175 (2001).

    Article  CAS  Google Scholar 

  18. Kim, A.S., Anderson, S.A., Rubenstein, J.L., Lowenstein, D.H. & Pleasure, S.J. Pax-6 regulates expression of SFRP-2 and Wnt-7b in the developing CNS. J. Neurosci. 21, RC132 (2001).

    Article  CAS  Google Scholar 

  19. Assimacopoulos, S., Grove, E.A. & Ragsdale, C.W. Identification of a Pax6-dependent epidermal growth factor family signaling source at the lateral edge of the embryonic cerebral cortex. J. Neurosci. 23, 6399–6403 (2003).

    Article  CAS  Google Scholar 

  20. Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93, 11173–11178 (1996).

    Article  CAS  Google Scholar 

  21. Gilmore, E.C., Ohshima, T., Goffinet, A.M., Kulkarni, A.B. & Herrup, K. Cyclin-dependent kinase 5–deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci. 18, 6370–6377 (1998).

    Article  CAS  Google Scholar 

  22. Fernandez, A.S., Pieau, C., Reperant, J., Boncinelli, E. & Wassef, M. Expression of the Emx1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125, 2099–2111 (1998).

    CAS  PubMed  Google Scholar 

  23. Gorski, J.A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  Google Scholar 

  24. Vyas, A., Saha, B., Lai, E. & Tole, S. Paleocortex is specified in mice in which dorsal telencephalic patterning is severely disrupted. J. Comp. Neurol. 466, 545–553 (2003).

    Article  Google Scholar 

  25. Grove, E.A., Tole, S., Limon, J., Yip, L. & Ragsdale, C.W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

    CAS  PubMed  Google Scholar 

  26. Swanson, L.W. & Petrovich, G.D. What is the amygdala? Trends Neurosci. 21, 323–331 (1998).

    Article  CAS  Google Scholar 

  27. Barton, R.A., Aggleton, J.P. & Grenyer, R. Evolutionary coherence of the mammalian amygdala. Proc Biol Sci. 270, 539–543 (2003).

    Article  Google Scholar 

  28. Swanson, L.W. The amygdala and its place in the cerebral hemisphere. Ann. NY Acad. Sci. 985, 174–184 (2003).

    Article  Google Scholar 

  29. Caviness, V.S., Jr. Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res. 256, 293–302 (1982).

    Article  Google Scholar 

  30. Beffert, U. et al. Reelin and cyclin-dependent kinase 5–dependent signals cooperate in regulating neuronal migration and synaptic transmission. J. Neurosci. 24, 1897–1906 (2004).

    Article  CAS  Google Scholar 

  31. Xie, Z., Samuels, B.A. & Tsai, L.H. Cyclin-dependent kinase 5 permits efficient cytoskeletal remodeling—a hypothesis on neuronal migration. Cereb. Cortex 16, i64–i68 (2006).

    Article  Google Scholar 

  32. Nadarajah, B., Brunstrom, J.E., Grutzendler, J., Wong, R.O. & Pearlman, A.L. Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143–150 (2001).

    Article  CAS  Google Scholar 

  33. Nadarajah, B. & Parnavelas, J.G. Modes of neuronal migration in the developing cerebral cortex. Nat. Rev. Neurosci. 3, 423–432 (2002).

    Article  CAS  Google Scholar 

  34. Hatanaka, Y., Hisanaga, S., Heizmann, C.W. & Murakami, F. Distinct migratory behavior of early and late-born neurons derived from the cortical ventricular zone. J. Comp. Neurol. 479, 1–14 (2004).

    Article  Google Scholar 

  35. Rice, D.S. et al. Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125, 3719–3729 (1998).

    CAS  PubMed  Google Scholar 

  36. Streidter, G.F. The telencephalon of tetrapods in evolution. Brain Behav. Evol. 49, 179–213 (1997).

    Article  Google Scholar 

  37. Aboitiz, F., Montiel, J., Morales, D. & Concha, M. Evolutionary divergence of the reptilian and the mammalian brains: considerations on connectivity and development. Brain Res Brain Res Rev. 39, 141–153 (2002).

    Article  Google Scholar 

  38. Martinez-Garcia, F., Olucha, F.E., Teruel, V., Lorente, M.J. & Schwerdtfeger, W.K. Afferent and efferent connections of the olfactory bulbs in the lizard Podarcis hispanica. J. Comp. Neurol. 305, 337–347 (1991).

    Article  CAS  Google Scholar 

  39. Molnar, Z. & Butler, A.B. The corticostriatal junction: a crucial region for forebrain development and evolution. Bioessays 24, 530–541 (2002).

    Article  Google Scholar 

  40. Yamamoto, K., Sun, Z., Wang, H.B. & Reiner, A. Subpallial amygdala and nucleus taeniae in birds resemble extended amygdala and medial amygdala in mammals in their expression of markers of regional identity. Brain Res. Bull. 66, 341–347 (2005).

    Article  Google Scholar 

  41. Aboitiz, F. Evolution of isocortical organization. A tentative scenario including roles of reelin, p35/cdk5 and the subplate zone. Cereb. Cortex 9, 655–661 (1999).

    Article  CAS  Google Scholar 

  42. Broccoli, V.V. Evolutionary developmental biology of the cerebral cortex. Bioessays 21, 974–977 (1999).

    Article  CAS  Google Scholar 

  43. Avian Brain Nomenclature Consortium. Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 6, 151–159 (2005).

  44. Bar, I., Lambert de Rouvroit, C. & Goffinet, A.M. The evolution of cortical development A hypothesis based on the role of the Reelin signaling pathway. Trends Neurosci. 23, 633–638 (2000).

    Article  CAS  Google Scholar 

  45. Tissir, F., Lambert de Rouvroit, C. & Goffinet, A.M. The role of Reelin in the development and evolution of the cerebral cortex. Braz. J. Med. Biol. Res. 35, 1473–1484 (2002).

    Article  CAS  Google Scholar 

  46. D'Arcangelo, G. et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).

    Article  CAS  Google Scholar 

  47. Pellegrini, M., Mansouri, A., Simeone, A., Boncinelli, E. & Gruss, P. Dentate gyrus formation requires Emx2. Development 122, 3893–3898 (1996).

    CAS  PubMed  Google Scholar 

  48. Porter, F.D. et al. Lhx2, a LIM homeobox gene, is required for eye, forebrain and definitive erythrocyte development. Development 124, 2935–2944 (1997).

    CAS  PubMed  Google Scholar 

  49. Tole, S. & Grove, E.A. Detailed field pattern is intrinsic to the embryonic mouse hippocampus early in neurogenesis. J. Neurosci. 21, 1580–1589 (2001).

    Article  CAS  Google Scholar 

  50. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Kageyama, Y. Nakagawa, F. D. Porter, T. Rabbitts, C. Ragsdale, E. Grove and Y. Zhao for gifts of plasmid DNA; F. D. Porter for the Lhx2 mutant breeding pairs; M. Frotscher for the gift of reeler mutant tissue for preliminary experiments; and V. Vaidya, M. Benekareddy and A. Nair for critical comments on the manuscript. The Rat-401 monoclonal antibody to Nestin, developed by S. Hockfield, was obtained from the Developmental Studies Hybridoma Bank and was developed under the auspices of the US National Institute of Child Health and Human Development and maintained by The University of Iowa. We also thank the Tata Institute of Fundamental Research Animal House staff for excellent support. This work was supported by a Wellcome Trust Senior Fellowship (056684/Z/99/Z) and a Swarnajayanti Fellowship (Dept. of Science and Technology, Govt. of India) to S.T. and a Kanwal Rekhi Career Development Award (Tata Institute of Fundamental Research Endowment Fund) to B.S. and P.H.

Author information

Authors and Affiliations

Authors

Contributions

R.R., D.H., B.S., P.H. and L.B. carried out the experiments. R.R., D.H. and S.T. analyzed the data. S.T. supervised the project and wrote the paper. Mutant mouse tissue was provided by T.K. and R.F.H. (Tbr1 mutant and preliminary data), Y.S. and S.A. (Emx1 and Emx1/2 double mutants), T.O. (Cdk5 mutant) and A.S. (Emx2 and reeler mutants).

Corresponding author

Correspondence to Shubha Tole.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Methods (PDF 6110 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Remedios, R., Huilgol, D., Saha, B. et al. A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex. Nat Neurosci 10, 1141–1150 (2007). https://doi.org/10.1038/nn1955

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1955

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing