Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development of the declarative memory system in the human brain

Abstract

Brain regions that are involved in memory formation, particularly medial temporal lobe (MTL) structures and lateral prefrontal cortex (PFC), have been identified in adults, but not in children. We investigated the development of brain regions involved in memory formation in 49 children and adults (ages 8–24), who studied scenes during functional magnetic resonance imaging. Recognition memory for vividly recollected scenes improved with age. There was greater activation for subsequently remembered scenes than there was for forgotten scenes in MTL and PFC regions. These activations increased with age in specific PFC, but not in MTL, regions. PFC, but not MTL, activations correlated with developmental gains in memory for details of experiences. Voxel-based morphometry indicated that gray matter volume in PFC, but not in MTL, regions reduced with age. These results suggest that PFC regions that are important for the formation of detailed memories for experiences have a prolonged maturational trajectory.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Recognition memory for scenes improved significantly with age, specifically for recollection (R) and not familiarity (K) indices.
Figure 2: Subsequent memory activations (R > F) across all 49 participants, ages 8–24 years.
Figure 3: Activation associated with successful memory formation increased with age in PFC, but not MTL, ROIs across age.
Figure 4: Activations associated with successful memory formation (R > F) for children, adolescents and young adults.
Figure 5: Subsequent memory effects and gray matter concentrations in children, adolescents and young adults.

References

  1. 1

    Squire, L.R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    CAS  Article  Google Scholar 

  2. 2

    Scoville, W.B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Janowsky, J.S., Shimamura, A.P. & Squire, L.R. Source memory impairment in patients with frontal lobe lesions. Neuropsychologia 27, 1043–1056 (1989).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Schacter, D.L., Harbluk, J.L. & Mclachlan, D.R. Retrieval without recollection: an experimental analysis of source amnesia. J. Verbal Learn. Verbal Behav. 23, 593–611 (1984).

    Article  Google Scholar 

  5. 5

    Brewer, J.B., Zhao, Z., Desmond, J.E., Glover, G.H. & Gabrieli, J.D.E. Making memories: brain activity that predicts how well visual experience will be remembered. Science 281, 1185–1187 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Stern, C.E. et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 8660–8665 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Davachi, L., Mitchell, J.P. & Wagner, A.D. Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. Proc. Natl. Acad. Sci. USA 100, 2157–2162 (2003).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Buckner, R.L., Kelley, W.M. & Petersen, S.E. Frontal cortex contributes to human memory formation. Nat. Neurosci. 2, 311–314 (1999).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Wagner, A.D. et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188–1191 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Billingsley, R.L., Lou Smith, M. & Pat McAndrews, M. Developmental patterns in priming and familiarity in explicit recollection. J. Exp. Child Psychol. 82, 251–277 (2002).

    PubMed  Article  Google Scholar 

  11. 11

    Cycowicz, Y.M., Friedman, D., Snodgrass, J.G. & Duff, M. Recognition and source memory for pictures in children and adults. Neuropsychologia 39, 255–267 (2001).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Dirks, J. & Neisser, U. Memory for objects in real scenes: the development of recognition and recall. J. Exp. Child Psychol. 23, 315–328 (1977).

    Article  Google Scholar 

  13. 13

    Mandler, J.M. & Robinson, C.A. Developmental changes in picture recognition. J. Exp. Child Psychol. 26, 122–136 (1978).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Drummey, A.B. & Newcombe, N.S. Developmental changes in source memory. Dev. Sci. 5, 502–513 (2002).

    Article  Google Scholar 

  15. 15

    Cycowicz, Y.M., Friedman, D. & Duff, M. Pictures and their colors: what do children remember? J. Cogn. Neurosci. 15, 759–768 (2003).

    PubMed  Article  Google Scholar 

  16. 16

    Czernochowski, D., Mecklinger, A., Johansson, M. & Brinkmann, M. Age-related differences in familiarity and recollection: ERP evidence from a recognition memory study in children and young adults. Cogn. Affect. Behav. Neurosci. 5, 417–433 (2005).

    PubMed  Article  Google Scholar 

  17. 17

    Huttenlocher, P.R. Synaptic density in human frontal cortex - developmental changes and effects of aging. Brain Res. 163, 195–205 (1979).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Sowell, E.R. et al. Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 24, 8223–8231 (2004).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Giedd, J.N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Gogtay, N. et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA 101, 8174–8179 (2004).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Sowell, E.R., Trauner, D.A., Gamst, A. & Jernigan, T.L. Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev. Med. Child Neurol. 44, 4–16 (2002).

    PubMed  Article  Google Scholar 

  22. 22

    Gogtay, N. et al. Dynamic mapping of normal human hippocampal development. Hippocampus 16, 664–672 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Sowell, E.R. & Jernigan, T.L. Further MRI evidence of late brain maturation: limbic volume increases and changing asymmetries during childhood and adolescence. Dev. Neuropsychol. 14, 599–617 (1998).

    Article  Google Scholar 

  24. 24

    Giedd, J.N. et al. Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. J. Comp. Neurol. 366, 223–230 (1996).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Menon, V., Boyett-Anderson, J.M. & Reiss, A.L. Maturation of medial temporal lobe response and connectivity during memory encoding. Brain Res. Cogn. Brain Res. 25, 379–385 (2005).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Chiu, C.Y.P., Schmithorst, V.J., Brown, R.D., Holland, S.K. & Dunn, S. Making memories: a crosssectional investigation of episodic memory encoding in childhood using fMRI. Dev. Neuropsychol. 29, 321–340 (2006).

    PubMed  Article  Google Scholar 

  27. 27

    Ranganath, C. et al. Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia 42, 2–13 (2004).

    PubMed  Article  Google Scholar 

  28. 28

    Wig, G.S., Miller, M.B., Kingstone, A. & Kelley, W.M. Separable routes to human memory formation: dissociating task and material contributions in the prefrontal cortex. J. Cogn. Neurosci. 16, 139–148 (2004).

    PubMed  Article  Google Scholar 

  29. 29

    Casey, B.J., Galvan, A. & Hare, T.A. Changes in cerebral functional organization during cognitive development. Curr. Opin. Neurobiol. 15, 239–244 (2005).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Schlaggar, B.L. et al. Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296, 1476–1479 (2002).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Brown, T.T. et al. Developmental changes in human cerebral functional organization for word generation. Cereb. Cortex 15, 275–290 (2005).

    PubMed  Article  Google Scholar 

  32. 32

    Wilke, M., Schmithorst, V.J. & Holland, S.K. Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data. Magn. Reson. Med. 50, 749–757 (2003).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Burgund, E.D. et al. The feasibility of a common stereotactic space for children and adults in fMRI studies of development. Neuroimage 17, 184–200 (2002).

    Article  Google Scholar 

  34. 34

    Davis, T.L., Kwong, K.K., Weisskoff, R.M. & Rosen, B.R. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl. Acad. Sci. USA 95, 1834–1839 (1998).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Aguirre, G.K., Zarahn, E. & D'Esposito, M. The variability of human, BOLD hemodynamic responses. Neuroimage 8, 360–369 (1998).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Miezin, F.M., Maccotta, L., Ollinger, J.M., Petersen, S.E. & Buckner, R.L. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure and the possibility of ordering brain activity based on relative timing. Neuroimage 11, 735–759 (2000).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    D'Esposito, M., Deouell, L.Y. & Gazzaley, A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat. Rev. Neurosci. 4, 863–872 (2003).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Buckner, R.L., Snyder, A.Z., Sanders, A.L., Raichle, M.E. & Morris, J.C. Functional brain imaging of young, nondemented and demented older adults. J. Cogn. Neurosci. 12, 24–34 (2000).

    PubMed  Article  Google Scholar 

  39. 39

    Kang, H.C., Burgund, E.D., Lugar, H.M., Petersen, S.E. & Schlaggar, B.L. Comparison of functional activation foci in children and adults using a common stereotactic space. Neuroimage 19, 16–28 (2003).

    Article  Google Scholar 

  40. 40

    Shaw, P. et al. Intellectual ability and cortical development in children and adolescents. Nature 440, 676–679 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Durston, S. et al. A shift from diffuse to focal cortical activity with development. Dev. Sci. 9, 1–8 (2006).

    PubMed  Article  Google Scholar 

  42. 42

    Knowlton, B.J. & Squire, L.R. Remembering and knowing: two different expressions of declarative memory. J. Exp. Psychol. Learn. Mem. Cogn. 21, 699–710 (1995).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Sowell, E.R., Delis, D., Stiles, J. & Jernigan, T.L. Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural MRI study. J. Int. Neuropsychol. Soc. 7, 312–322 (2001).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Bunge, S.A., Dudukovic, N.M., Thomason, M.E., Vaidya, C.J. & Gabrieli, J.D.E. Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron 33, 301–311 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Goswami, U. Neuroscience and education: from research to practice? Nat. Rev. Neurosci. 7, 406–413 (2006).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Yonelinas, A.P. & Jacoby, L.L. Dissociating automatic and controlled processes in a memory-search task: beyond implicit memory. Psychol. Res. 57, 156–165 (1995).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Glover, G.H. & Law, C.S. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn. Reson. Med. 46, 515–522 (2001).

    CAS  Article  Google Scholar 

  48. 48

    Good, C.D. et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14, 21–36 (2001).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Ashburner, J. & Friston, K.J. Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Snodgrass, J.G. & Vanderwart, M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity and visual complexity. J. Exp. Psychol. [Hum Learn] 6, 174–215 (1980).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank N. Gaab, T. Hedden, D. Palti and S. Corkin for helpful discussions, J. Motsinger and N. Rubinstein for help with data collection and analysis, and three anonymous reviewers for helpful comments on earlier versions of the manuscript. This work was supported by the US National Institute of Mental Health (J.D.E.G).

Author information

Affiliations

Authors

Contributions

N.O., Y.-C.K. and J.D.E.G. designed the experiments. N.O., Y.-C.K., P.S.-H., H.K. and S.W.-G. collected and analyzed the data. N.O., S.W.-G. and J.D.E.G. wrote the manuscript.

Corresponding author

Correspondence to Noa Ofen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 88 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ofen, N., Kao, YC., Sokol-Hessner, P. et al. Development of the declarative memory system in the human brain. Nat Neurosci 10, 1198–1205 (2007). https://doi.org/10.1038/nn1950

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing