Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A hippocampal Cdk5 pathway regulates extinction of contextual fear

Abstract

Treatment of emotional disorders involves the promotion of extinction processes, which are defined as the learned reduction of fear. The molecular mechanisms underlying extinction have only begun to be elucidated. By employing genetic and pharmacological approaches in mice, we show here that extinction requires downregulation of Rac-1 and cyclin-dependent kinase 5 (Cdk5), and upregulation of p21 activated kinase-1 (PAK-1) activity. This is physiologically achieved by a Rac-1–dependent relocation of the Cdk5 activator p35 from the membrane to the cytosol and dissociation of p35 from PAK-1. Moreover, our data suggest that Cdk5/p35 activity prevents extinction in part by inhibition of PAK-1 activity in a Rac-1–dependent manner. We propose that extinction of contextual fear is regulated by counteracting components of a molecular pathway involving Rac-1, Cdk5 and PAK-1. Our data suggest that this pathway could provide a suitable target for therapeutic treatment of emotional disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of hippocampal Cdk5 activity facilitates extinction.
Figure 2: Increased Cdk5 activity in CK-p25 Tg mice impairs extinction.
Figure 3: Membrane association of Cdk5 and p35 during extinction is regulated by Rac-1.
Figure 4: Inhibition of Rac-1 facilitates extinction.
Figure 5: Cdk5 affects PAK-1 activity during extinction.
Figure 6: PAK-1 activity promotes extinction.

Similar content being viewed by others

References

  1. Myers, K.M. & Davis, M. Behavioral and neural analysis of extinction. Neuron 36, 567–584 (2002).

    Article  CAS  Google Scholar 

  2. Davis, M., Ressler, K., Rothbaum, B.O. & Richardson, R. Effects of D-cycloserine on extinction: translation from preclinical to clinical work. Biol. Psychiatry 60, 369–375 (2006).

    Article  CAS  Google Scholar 

  3. Lattal, K.M., Radulovic, J. & Lukowiak, K. Extinction: does it or doesn't it? The requirement of altered gene activity and new protein synthesis. Biol. Psychiatry 60, 344–351 (2006).

    Article  Google Scholar 

  4. Sotres-Bayon, F., Cain, C.K. & LeDoux, J.E. Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol. Psychiatry 60, 329–336 (2006).

    Article  Google Scholar 

  5. Kim, J.J. & Fanselow, M.S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).

    Article  CAS  Google Scholar 

  6. Fischer, A., Sananbenesi, F., Schrick, C., Spiess, J. & Radulovic, J. Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J. Neurosci. 24, 1962–1966 (2004).

    Article  CAS  Google Scholar 

  7. Falls, W.A., Miserendino, M.J. & Davis, M. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J. Neurosci. 12, 854–863 (1992).

    Article  CAS  Google Scholar 

  8. Chhatwal, J.P., Stanek-Rattiner, L., Davis, M. & Ressler, K.J. Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nat. Neurosci. 9, 870–872 (2006).

    Article  CAS  Google Scholar 

  9. Szapiro, G., Vianna, M.R., McGaugh, J.L., Medina, J.H. & I., I. The role of NMDA glutamate receptors, PKA, MAPK and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus 13, 53–58 (2003).

    Article  CAS  Google Scholar 

  10. Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    Article  CAS  Google Scholar 

  11. Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003).

    Article  CAS  Google Scholar 

  12. Matus, A. Actin-based plasticity in dendritic spines. Science 290, 754–758 (2000).

    Article  CAS  Google Scholar 

  13. Fischer, A., Sananbenesi, F., Spiess, J. & Radulovic, J. Cdk5 in the adult non-demented brain. Curr. Drug Targets CNS Neurol. Disord. 2, 375–381 (2003).

    Article  CAS  Google Scholar 

  14. Dhavan, R. & Tsai, L.H. A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749–759 (2001).

    Article  CAS  Google Scholar 

  15. Nikolic, M. The role of Rho GTPases and associated kinases in regulating neurite outgrowth. Int. J. Biochem. Cell Biol. 34, 731–745 (2002).

    Article  CAS  Google Scholar 

  16. Cheung, Z.H., Fu, A.K. & Ip, N.Y. Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 50, 13–18 (2006).

    Article  CAS  Google Scholar 

  17. Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93, 11173–11178 (1996).

    Article  CAS  Google Scholar 

  18. Fischer, A., Sananbenesi, F., Schrick, C., Spiess, J. & Radulovic, J. Cyclin-dependent kinase 5 is required for associative learning. J. Neurosci. 22, 3700–3707 (2002).

    Article  CAS  Google Scholar 

  19. Fischer, A., Sananbenesi, F., Pang, P.T., Lu, B. & Tsai, L.H. Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 48, 825–838 (2005).

    Article  CAS  Google Scholar 

  20. Angelo, M., Plattner, F., Irvine, E.E. & Giese, K.P. Improved reversal learning and altered fear conditioning in transgenic mice with regionally restricted p25 expression. Eur. J. Neurosci. 18, 423–431 (2003).

    Article  Google Scholar 

  21. Li, B.S. et al. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc. Natl. Acad. Sci. USA 98, 12742–12747 (2001).

    Article  CAS  Google Scholar 

  22. Tan, T.C. et al. Cdk5 is essential for synaptic vesicle endocytosis. Nat. Cell Biol. 5, 701–710 (2003).

    Article  CAS  Google Scholar 

  23. Tomizawa, K. et al. Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. J. Cell Biol. 163, 813–824 (2003).

    Article  CAS  Google Scholar 

  24. Kim, Y. et al. Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442, 814–817 (2006).

    Article  CAS  Google Scholar 

  25. Lee, S.Y., Wenk, M.R., Kim, Y., Nairn, A.C. & De Camilli, P. Regulation of synpatojanin 1 by cyclin-dependent kinase 5 at synapses. Proc. Natl. Acad. Sci. USA 101, 546–551 (2004).

    Article  CAS  Google Scholar 

  26. Hawasli, A.H. et al. Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat. Neurosci. advance online publication 27 May 2007 (doi:10.1038/nn1914).

    Article  CAS  Google Scholar 

  27. Nakayama, A.Y., Harms, M.B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000).

    Article  CAS  Google Scholar 

  28. Hayashi, M.L. et al. Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron 42, 773–787 (2004).

    Article  CAS  Google Scholar 

  29. Delamater, A.R. Experimental extinction in Pavlovian conditioning: behavioural and neuroscience perspectives. Q. J. Exp. Psychol. B 57, 97–132 (2004).

    Article  Google Scholar 

  30. Myers, K.M. & Davis, M. Mechanisms of fear extinction. Mol. Psychiatry 12, 120–150 (2007).

    Article  CAS  Google Scholar 

  31. Kitagawa, M. et al. Butyrolactone I, a selective inhibitor of cdk2 and cdc2 kinase. Oncogene 8, 2425–2432 (1993).

    CAS  PubMed  Google Scholar 

  32. Fischer, A. et al. Hippocampal Mek/Erk signaling mediates extinction of contextual freezing behavior. Neurobiol. Learn. Mem. 87, 149–158 (2007).

    Article  CAS  Google Scholar 

  33. Nikolic, M., Chou, M.M., Lu, W., Mayer, B.J. & Tsai, L.H. The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395, 194–198 (1998).

    Article  CAS  Google Scholar 

  34. Zhang, Q.G. et al. Akt inhibits MLK3/JNK3 signaling by inactivating Rac1: a protective mechanism against ischemic brain injury. J Neurochem. 98, 1886–1898 (2006).

    Article  CAS  Google Scholar 

  35. Desire, L. et al. RAC1 inhibition targets amyloid precursor protein processing by gamma-secretase and decreases Abeta production in vitro and in vivo. J. Biol. Chem. 280, 37516–37525 (2005).

    Article  CAS  Google Scholar 

  36. Rashid, T., Banerjee, M. & Nikolic, M. Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J. Biol. Chem. 276, 49043–49052 (2001).

    Article  CAS  Google Scholar 

  37. Lei, M. et al. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102, 387–397 (2000).

    Article  CAS  Google Scholar 

  38. Wong, S.T. et al. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron 23, 787–798 (1999).

    Article  CAS  Google Scholar 

  39. Wang, H., Ferguson, G.D., Pineda, V.V., Cundiff, P.E. & Storm, D.R. Overexpression of type-1 adenylyl cyclase in mouse forebrain enhances recognition memory and LTP. Nat. Neurosci. 7, 635–642 (2004).

    Article  CAS  Google Scholar 

  40. Burgos-Robles, A., Vidal-Gonzalez, I., Santini, E. & Quirk, G.J. Consolidation of fear extinction requires NMDA receptor–dependent bursting in the ventromedial prefrontal cortex. Neuron 53, 871–880 (2007).

    Article  CAS  Google Scholar 

  41. Vianna, M.R., Coitinho, A.S. & Izquierdo, I. Role of the hippocampus and amygdala in the extinction of fear-motivated learning. Curr. Neurovasc. Res. 1, 55–60 (2004).

    Article  Google Scholar 

  42. Berlau, D.J. & McGaugh, J.L. Enhancement of extinction memory consolidation: the role of the noradrenergic and GABAergic systems within the basolateral amygdala. Neurobiol. Learn. Mem. 86, 123–132 (2006).

    Article  CAS  Google Scholar 

  43. Lin, C.H. et al. Identification of calcineurin as a key signal in the extinction of fear memory. J. Neurosci. 23, 1574–1579 (2003).

    Article  CAS  Google Scholar 

  44. Bonhoeffer, T. & Yuste, R. Spine motility. Phenomenology, mechanisms and function. Neuron 35, 1019–1027 (2002).

    Article  CAS  Google Scholar 

  45. Edwards, D.C., Sanders, L.C., Bokoch, G.M. & Gill, G.N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol. 1, 253–259 (1999).

    Article  CAS  Google Scholar 

  46. Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805–809 (1998).

    Article  CAS  Google Scholar 

  47. Fu, W.Y. et al. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat. Neurosci. 10, 67–76 (2007).

    Article  CAS  Google Scholar 

  48. Berman, D.E. & Dudai, Y. Memory extinction, learning anew and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291, 2417–2419 (2001).

    Article  CAS  Google Scholar 

  49. Howell, D.C. Statistical Methods for Psychology (ed. Crokett, C.) (Duxbury Thompson Learning, Duxbury, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank B. Samuels for reading the manuscript and for critical discussion, all members of the Tsai lab for helpful advice, M. Nikolic for the pPAK-1T212 antibody and S. Tonegawa for the dominant-negative PAK-1 construct. L.-H.T. is an investigator of the Howard Hughes Medical Institute. This work was partially supported by a US National Institutes of Health grant (NS051874) to L.-H.T. This work was also partially supported by a US National Institute of Mental Health grant MH073669 to J.R., and a Humboldt/Deutsche Forschungsgemeinschaft fellowship to F.S. and A.F., respectively, and by funds from the European Neuroscience Institute Goettingen to A.F. The European Neuroscience Institute is jointly funded by the Medical School University Goettingen and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

The studies were conceived and designed by F.S., A.F., J.R. and L.-H.T. F.S., A.F., X.W., C.S., R.N. and J.R. contributed to the experiments in this work. The paper was written by A.F. and L.-H.T.

Corresponding authors

Correspondence to Andre Fischer, Jelena Radulovic or Li-Huei Tsai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 5800 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sananbenesi, F., Fischer, A., Wang, X. et al. A hippocampal Cdk5 pathway regulates extinction of contextual fear. Nat Neurosci 10, 1012–1019 (2007). https://doi.org/10.1038/nn1943

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1943

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing