Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Early experience impairs perceptual discrimination

Abstract

Sensory experience can reorganize cortical sensory representations in an epoch of early development. During this period, cortical sensory neurons may shift their response selectivity and become tuned to more frequently occurring stimuli. Although this enlarged cortical representation is believed to underlie improved sensory processing of the experienced stimuli, its precise perceptual consequences are still unknown. We show that rearing rats in a single-frequency tonal environment results in enlarged cortical representations of the frequencies near that of the experienced tone, but the animals are impaired in perceptual discrimination of the over-represented frequencies. By contrast, discrimination of the neighboring under-represented frequencies is substantially improved. Computational analysis indicated that the altered perceptual ability could be fully accounted for by the sound exposure–induced reorganization of cortical primary auditory representations. These results indicate that early experience shapes sensory perception. The same plasticity processes may be important in optimizing phonemic representations in humans.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Tonal frequency discrimination.
Figure 2: Enlarged representations of the experienced frequency.
Figure 3: Tone exposure–induced effects.
Figure 4: Reduced information to decode over-represented frequencies.
Figure 5: Modeling the frequency representations in the primary auditory cortex.
Figure 6: Frequency-discrimination performances of the model primary auditory cortex.

References

  1. Wiesel, T.N. & Hubel, D.H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28, 1029–1040 (1965).

    CAS  PubMed  Article  Google Scholar 

  2. Knudsen, E.I. Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl. Science 222, 939–942 (1983).

    CAS  PubMed  Article  Google Scholar 

  3. Doupe, A.J. & Kuhl, P.K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).

    CAS  PubMed  Article  Google Scholar 

  4. Sengpiel, F., Stawinski, P. & Bonhoeffer, T. Influence of experience on orientation maps in cat visual cortex. Nat. Neurosci. 2, 727–732 (1999).

    CAS  PubMed  Article  Google Scholar 

  5. Zhang, L.I., Bao, S. & Merzenich, M.M. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat. Neurosci. 4, 1123–1130 (2001).

    CAS  PubMed  Article  Google Scholar 

  6. Chang, E.F. & Merzenich, M.M. Environmental noise retards auditory cortical development. Science 300, 498–502 (2003).

    CAS  PubMed  Article  Google Scholar 

  7. Pantev, C. et al. Increased auditory cortical representation in musicians. Nature 392, 811–814 (1998).

    CAS  PubMed  Article  Google Scholar 

  8. Naatanen, R. et al. Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature 385, 432–434 (1997).

    CAS  PubMed  Article  Google Scholar 

  9. Burns, E.M. & Ward, W.D. Categorical perception–phenomenon or epiphenomenon: evidence from experiments in the perception of melodic musical intervals. J. Acoust. Soc. Am. 63, 456–468 (1978).

    CAS  PubMed  Article  Google Scholar 

  10. Zatorre, R.J. & Halpern, A.R. Identification, discrimination, and selective adaptation of simultaneous musical intervals. Percept. Psychophys. 26, 384–395 (1979).

    CAS  PubMed  Article  Google Scholar 

  11. Tallal, P. et al. Language comprehension in language-learning impaired children improved with acoustically modified speech. Science 271, 81–84 (1996).

    CAS  PubMed  Article  Google Scholar 

  12. Kuhl, P.K., Williams, K.A., Lacerda, F., Stevens, K.N. & Lindblom, B. Linguistic experience alters phonetic perception in infants by 6 months of age. Science 255, 606–608 (1992).

    CAS  PubMed  Article  Google Scholar 

  13. Recanzone, G.H., Schreiner, C.E. & Merzenich, M.M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Polley, D.B., Heiser, M.A., Blake, D.T., Schreiner, C.E. & Merzenich, M.M. Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. Proc. Natl. Acad. Sci. USA 101, 16351–16356 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Polley, D.B., Steinberg, E.E. & Merzenich, M.M. Perceptual learning directs auditory cortical map reorganization through top-down influences. J. Neurosci. 26, 4970–4982 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Bao, S., Chang, E.F., Woods, J. & Merzenich, M.M. Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. Nat. Neurosci. 7, 974–981 (2004).

    CAS  PubMed  Article  Google Scholar 

  17. Recanzone, G.H., Merzenich, M.M., Jenkins, W.M., Grajski, K.A. & Dinse, H.R. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67, 1031–1056 (1992).

    CAS  PubMed  Article  Google Scholar 

  18. Brown, M., Irvine, D.R. & Park, V.N. Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex. Cereb. Cortex 14, 952–965 (2004).

    PubMed  Article  Google Scholar 

  19. Talwar, S.K. & Gerstein, G.L. Reorganization in awake rat auditory cortex by local microstimulation and its effect on frequency-discrimination behavior. J. Neurophysiol. 86, 1555–1572 (2001).

    CAS  PubMed  Article  Google Scholar 

  20. Zhang, L.I., Bao, S. & Merzenich, M.M. Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proc. Natl. Acad. Sci. USA 99, 2309–2314 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Godde, B., Stauffenberg, B., Spengler, F. & Dinse, H.R. Tactile coactivation–induced changes in spatial discrimination performance. J. Neurosci. 20, 1597–1604 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Tegenthoff, M. et al. Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5-Hz rTMS. PLoS Biol. 3, e362 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  23. Paradiso, M.A. A theory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biol. Cybern. 58, 35–49 (1988).

    CAS  PubMed  Article  Google Scholar 

  24. Dayan, P. & Abbott, L.F. Theoretical Neuroscience (The MIT Press, Cambridge, Massachusetts, 2001).

    Google Scholar 

  25. Seung, H.S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Kuhl, P.K. Human adults and human infants show a 'perceptual magnet effect' for the prototypes of speech categories, monkeys do not. Percept. Psychophys. 50, 93–107 (1991).

    CAS  PubMed  Article  Google Scholar 

  27. Guenther, F.H. & Gjaja, M.N. The perceptual magnet effect as an emergent property of neural map formation. J. Acoust. Soc. Am. 100, 1111–1121 (1996).

    CAS  PubMed  Article  Google Scholar 

  28. Kuhl, P.K. et al. Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Dev. Sci. 9, F13–F21 (2006).

    PubMed  Article  Google Scholar 

  29. Fitch, R.H., Miller, S. & Tallal, P. Neurobiology of speech perception. Annu. Rev. Neurosci. 20, 331–353 (1997).

    CAS  PubMed  Article  Google Scholar 

  30. Maye, J., Werker, J.F. & Gerken, L. Infant sensitivity to distributional information can affect phonetic discrimination. Cognition 82, B101–B111 (2002).

    PubMed  Article  Google Scholar 

  31. Kuhl, P.K., Tsao, F.M. & Liu, H.M. Foreign-language experience in infancy: effects of short-term exposure and social interaction on phonetic learning. Proc. Natl. Acad. Sci. USA 100, 9096–9101 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Ohl, F.W. & Scheich, H. Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian gerbil. Eur. J. Neurosci. 8, 1001–1017 (1996).

    CAS  PubMed  Article  Google Scholar 

  33. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    CAS  PubMed  Article  Google Scholar 

  34. Abbott, L.F. & Dayan, P. The effect of correlated variability on the accuracy of a population code. Neural Comput. 11, 91–101 (1999).

    CAS  PubMed  Article  Google Scholar 

  35. Luna, R., Hernandez, A., Brody, C.D. & Romo, R. Neural codes for perceptual discrimination in primary somatosensory cortex. Nat. Neurosci. 8, 1210–1219 (2005).

    CAS  PubMed  Article  Google Scholar 

  36. Bala, A.D., Spitzer, M.W. & Takahashi, T.T. Prediction of auditory spatial acuity from neural images on the owl's auditory space map. Nature 424, 771–774 (2003).

    CAS  PubMed  Article  Google Scholar 

  37. Kilgard, M.P. & Merzenich, M.M. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998).

    CAS  PubMed  Article  Google Scholar 

  38. Kilgard, M.P. et al. Sensory input directs spatial and temporal plasticity in primary auditory cortex. J. Neurophysiol. 86, 326–338 (2001).

    CAS  PubMed  Article  Google Scholar 

  39. Blake, D.T., Heiser, M.A., Caywood, M. & Merzenich, M.M. Experience-dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron 52, 371–381 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Bao, S., Chan, V.T. & Merzenich, M.M. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412, 79–83 (2001).

    CAS  PubMed  Article  Google Scholar 

  41. Fritz, J., Shamma, S., Elhilali, M. & Klein, D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat. Neurosci. 6, 1216–1223 (2003).

    CAS  PubMed  Article  Google Scholar 

  42. Ohl, F.W. & Scheich, H. Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian gerbil. Eur. J. Neurosci. 8, 1001–1017 (1996).

    CAS  PubMed  Article  Google Scholar 

  43. Engineer, N.D. et al. Environmental enrichment improves response strength, threshold, selectivity and latency of auditory cortex neurons. J. Neurophysiol. 92, 73–82 (2004).

    PubMed  Article  Google Scholar 

  44. Edeline, J.M. & Weinberger, N.M. Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. Behav. Neurosci. 107, 82–103 (1993).

    CAS  PubMed  Article  Google Scholar 

  45. Beitel, R.E., Schreiner, C.E., Cheung, S.W., Wang, X. & Merzenich, M.M. Reward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals. Proc. Natl. Acad. Sci. USA 100, 11070–11075 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Chowdhury, S.A. & Suga, N. Reorganization of the frequency map of the auditory cortex evoked by cortical electrical stimulation in the big brown bat. J. Neurophysiol. 83, 1856–1863 (2000).

    CAS  PubMed  Article  Google Scholar 

  47. Ma, X. & Suga, N. Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex. J. Neurophysiol. 89, 90–103 (2003).

    PubMed  Article  Google Scholar 

  48. Nelken, I., Chechik, G., Mrsic-Flogel, T.D., King, A.J. & Schnupp, J.W. Encoding stimulus information by spike numbers and mean response time in primary auditory cortex. J. Comput. Neurosci. 19, 199–221 (2005).

    PubMed  Article  Google Scholar 

  49. Jazayeri, M. & Movshon, J.A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    CAS  PubMed  Article  Google Scholar 

  50. Powell, M.J.D. A fast algorithm for nonlinearly constrained optimization calculations. in Numerical Analysis (ed. Watson, G.A.) (Springer Verlag, New York, 1977).

    Google Scholar 

Download references

Acknowledgements

We thank D. Polley for comments on the manuscript and D. Blake for discussions. The work was supported by a grant from US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Y.K.H. analyzed the perceptual behaviors, mapped the auditory cortex and conducted the modeling studies. H.K., M.N.I. and J.H.S. mapped the auditory cortex of the experimental and control animals and analyzed the mapping results. S.B. supervised the project and drafted the manuscript. All authors contributed to the experimental design, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Shaowen Bao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Table 1, Supplementary Methods (PDF 579 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Han, Y., Köver, H., Insanally, M. et al. Early experience impairs perceptual discrimination. Nat Neurosci 10, 1191–1197 (2007). https://doi.org/10.1038/nn1941

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing