Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors


Although endocannabinoids constitute one of the first lines of defense against pain, the anatomical locus and the precise receptor mechanisms underlying cannabinergic modulation of pain are uncertain. Clinical exploitation of the system is severely hindered by the cognitive deficits, memory impairment, motor disturbances and psychotropic effects resulting from the central actions of cannabinoids. We deleted the type 1 cannabinoid receptor (CB1) specifically in nociceptive neurons localized in the peripheral nervous system of mice, preserving its expression in the CNS, and analyzed these genetically modified mice in preclinical models of inflammatory and neuropathic pain. The nociceptor-specific loss of CB1 substantially reduced the analgesia produced by local and systemic, but not intrathecal, delivery of cannabinoids. We conclude that the contribution of CB1-type receptors expressed on the peripheral terminals of nociceptors to cannabinoid-induced analgesia is paramount, which should enable the development of peripherally acting CB1 analgesic agonists without any central side effects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Demonstration of conditional deletion of CB1 specifically in nociceptive neurons of the DRG in sensory neuron–specific CB1 knockout mice (SNS-CB1).
Figure 2: Expression of CB1 mRNA and CB1 protein is similar in the brain and spinal cord of CB1fl mice and SNS-CB1 mice.
Figure 3: Nociceptive responses, locomotive performance and nociceptive activity–induced expression of proteins in SNS-CB1 mice and their CB1fl littermates.
Figure 4: Analysis of endocannabinoid levels in the paws and spinal segments (L4–L6) of SNS-CB1 mice, CB1fl mice, global CB1 mice and their wild-type controls (n = 6 each) in the basal state (naive) or in wild-type mice after injection of CFA into the hindpaw.
Figure 5: Behavioral and electrophysiological analysis of SNS-CB1 mice in models of inflammatory pain.
Figure 6: Effects of a systemically applied CB1/CB2-agonist, WIN, on inflammation-induced mechanical hypersensitivity and immobilization behavior.
Figure 7: Effects of WIN.
Figure 8: Endocannabinoid levels, pain behavior and analgesic effects of WIN in SNS-CB1 mice and CB1fl mice in the SNI model for neuropathic pain.


  1. 1

    Walker, J.M. & Hohmann, A.G. Cannabinoid mechanisms of pain suppression. Handb. Exp. Pharmacol. 168, 509–554 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Pacher, P., Batkai, S. & Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58, 389–462 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Freund, T.F., Katona, I. & Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 83, 1017–1066 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Piomelli, D. The endocannabinoid system: a drug discovery perspective. Curr. Opin. Investig. Drugs 6, 672–679 (2005).

    CAS  PubMed  Google Scholar 

  5. 5

    Patwardhan, A.M. et al. The cannabinoid WIN55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc. Natl. Acad. Sci. USA 103, 11393–11398 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Oliver, D. et al. Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 304, 265–270 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Ledent, C. et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283, 401–404 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Zimmer, A., Zimmer, A.M., Hohmann, A.G., Herkenham, M. & Bonner, T.I. Increased mortality, hypoactivity and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. Natl. Acad. Sci. USA 96, 5780–5785 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Ibrahim, M.M. et al. CB2 cannabinoid receptor mediation of antinociception. Pain 122, 36–42 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Agarwal, N., Offermanns, S. & Kuner, R. Conditional gene deletion in primary nociceptive neurons of trigeminal ganglia and dorsal root ganglia. Genesis 38, 122–129 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Rubino, T ., Vigano, D ., Massi, P . & Parolaro, D . Changes in the cannabinoid receptor binding, G protein coupling and cyclic AMP cascade in the CNS of rats tolerant to and dependent on the synthetic cannabinoid compound CP55,940. J. Neurochem. 75, 2080–2086 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Ji, R.R., Baba, H., Brenner, G.J. & Woolf, C.J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat. Neurosci. 2, 1114–1119 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Hartmann, B. et al. The AMPA receptor subunits GluR-A and GluR-B reciprocally modulate spinal synaptic plasticity and inflammatory pain. Neuron 44, 637–650 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Tsay, D.G. et al. Experimental acute pancreatitis. In vitro magnetic resonance characteristics. Invest. Radiol. 22, 556–561 (1987).

    CAS  Article  Google Scholar 

  18. 18

    Kress, M. & Guenther, S. The role of [Ca2+]i in the ATP-induced heat sensitization process of rat nociceptive neurons. J. Neurophysiol. 81, 2612–2619 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Dogrul, A. et al. Topical cannabinoid antinociception: synergy with spinal sites. Pain 105, 11–16 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Pertwee, R.G. The ring test: a quantitative method for assessing the 'cataleptic' effect of cannabis in mice. Br. J. Pharmacol. 46, 753–763 (1972).

    CAS  Article  Google Scholar 

  21. 21

    Richardson, J.D., Kilo, S. & Hargreaves, K.M. Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain 75, 111–119 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Pascual, D., Goicoechea, C., Suardiaz, M. & Martin, M.I. A cannabinoid agonist, WIN55,212-2, reduces neuropathic nociception induced by paclitaxel in rats. Pain 118, 23–34 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Fox, A. et al. The role of central and peripheral Cannabinoid1 receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain. Pain 92, 91–100 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Valiveti, S., Hammell, D.C., Earles, D.C. & Stinchcomb, A.L. Transdermal delivery of the synthetic cannabinoid WIN55,212-2: in vitro/in vivo correlation. Pharm Res. 21, 1137–1145 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Bridges, D., Ahmad, K. & Rice, A.S. The synthetic cannabinoid WIN55,212-2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Br. J. Pharmacol. 133, 586–594 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Decosterd, I. & Woolf, C.J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Hohmann, A.G. & Herkenham, M. Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neuroscience 90, 923–931 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Bridges, D. et al. Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridisation and immunohistochemistry. Neuroscience 119, 803–812 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Binzen, U. et al. Co-expression of the voltage-gated potassium channel Kv1.4 with transient receptor potential channels (TRPV1 and TRPV2) and the cannabinoid receptor CB1 in rat dorsal root ganglion neurons. Neuroscience 142, 527–539 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Mitrirattanakul, S. et al. Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain. Pain 126, 102–114 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Shire, D. et al. An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J. Biol. Chem. 270, 3726–3731 (1995).

    CAS  Article  Google Scholar 

  32. 32

    Coutts, A.A., Irving, A.J., Mackie, K., Pertwee, R.G. & Anavi-Goffer, S. Localisation of cannabinoid CB1 receptor immunoreactivity in the guinea pig and rat myenteric plexus. J. Comp. Neurol. 448, 410–422 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Martin, W.J., Lai, N.K., Patrick, S.L., Tsou, K. & Walker, J.M. Antinociceptive actions of cannabinoids following intraventricular administration in rats. Brain Res. 629, 300–304 (1993).

    CAS  Article  Google Scholar 

  34. 34

    Azad, S.C. et al. Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. J. Neurosci. 24, 9953–9961 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Meng, I.D., Manning, B.H., Martin, W.J. & Fields, H.L. An analgesia circuit activated by cannabinoids. Nature 395, 381–383 (1998).

    CAS  Article  Google Scholar 

  36. 36

    Finn, D.P. et al. Effects of direct periaqueductal grey administration of a cannabinoid receptor agonist on nociceptive and aversive responses in rats. Neuropharmacology 45, 594–604 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Martin, W.J., Loo, C.M. & Basbaum, A.I. Spinal cannabinoids are anti-allodynic in rats with persistent inflammation. Pain 82, 199–205 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Calignano, A., La Rana, G., Giuffrida, A. & Piomelli, D. Control of pain initiation by endogenous cannabinoids. Nature 394, 277–281 (1998).

    CAS  Article  Google Scholar 

  39. 39

    Kolesnikov, Y.A., Jain, S., Wilson, R. & Pasternak, G.W. Peripheral morphine analgesia: synergy with central sites and a target of morphine tolerance. J. Pharmacol. Exp. Ther. 279, 502–506 (1996).

    CAS  PubMed  Google Scholar 

  40. 40

    Janson, W. & Stein, C. Peripheral opioid analgesia. Curr. Pharm. Biotechnol. 4, 270–274 (2003).

    CAS  Article  Google Scholar 

  41. 41

    Sokal, D.M., Elmes, S.J., Kendall, D.A. & Chapman, V. Intraplantar injection of anandamide inhibits mechanically evoked responses of spinal neurones via activation of CB2 receptors in anaesthetised rats. Neuropharmacology 45, 404–411 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Johanek, L.M. et al. Cannabinoids attenuate capsaicin-evoked hyperalgesia through spinal and peripheral mechanisms. Pain 93, 303–315 (2001).

    CAS  Article  Google Scholar 

  43. 43

    Quartilho, A. et al. Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors. Anesthesiology 99, 955–960 (2003).

    CAS  Article  Google Scholar 

  44. 44

    Ulugol, A., Karadag, H.C., Ipci, Y., Tamer, M. & Dokmeci, I. The effect of WIN55,212-2, a cannabinoid agonist, on tactile allodynia in diabetic rats. Neurosci. Lett. 371, 167–170 (2004).

    CAS  Article  Google Scholar 

  45. 45

    Mackie, K. & Stella, N. Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J. 8, E298–E306 (2006).

    Article  Google Scholar 

  46. 46

    Wang, L., Liu, J., Harvey-White, J., Zimmer, A. & Kunos, G. Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proc. Natl. Acad. Sci. USA 100, 1393–1398 (2003).

    CAS  Article  Google Scholar 

Download references


The authors are grateful towards H.-J. Wrede and J. Harvey-White for expert technical assistance and towards S. Offermanns for comments on an earlier version of this manuscript. This work was supported by an Emmy Noether Program grant and a Klinische Forschergruppe 107 grant from the Deutsche Forschungsgemeinschaft (DFG) to R.K., a DFG grant to B.L., US National Institutes of Health (NIH) grants NS039518 and NS 038253 to C.J.W. and DA11322 and DA00286 to K.M., an Intramural Research Program grant of NIH to P.P. and G.K., and a P18444 grant from the Fonds zur Förderung der Wissenschaftlichen Forschung to M.K.

Author information



Corresponding author

Correspondence to Rohini Kuner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Normal development of acute and pathological pain in SNS-Cre mice as compared with wild-type littermates. (PDF 80 kb)

Supplementary Fig. 2

Effects of WIN 55,212-2 (WIN), applied via intraplantar route of administration on inflammation-induced mechanical hypersensitivity in CB1−/− mice and their wild-type littermates. (PDF 66 kb)

Supplementary Fig. 3

Analysis of SNS-CB1−/− mice and CB1fl/fl mice in the spared nerve injury (SNI) model for neuropathic pain. (PDF 70 kb)

Supplementary Methods (PDF 137 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Agarwal, N., Pacher, P., Tegeder, I. et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 10, 870–879 (2007).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing