Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A central role for Necl4 (SynCAM4) in Schwann cell–axon interaction and myelination

Abstract

Myelination in the peripheral nervous system requires close contact between Schwann cells and the axon, but the underlying molecular basis remains largely unknown. Here we show that cell adhesion molecules (CAMs) of the nectin-like (Necl, also known as SynCAM or Cadm) family mediate Schwann cell–axon interaction during myelination. Necl4 is the main Necl expressed by myelinating Schwann cells and is located along the internodes in direct apposition to Necl1, which is localized on axons. Necl4 serves as the glial binding partner for axonal Necl1, and the interaction between these two CAMs mediates Schwann cell adhesion. The disruption of the interaction between Necl1 and Necl4 by their soluble extracellular domains, or the expression of a dominant-negative Necl4 in Schwann cells, inhibits myelination. These results suggest that Necl proteins are important for mediating axon-glia contact during myelination in peripheral nerves.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential expression of Necl proteins in the PNS.
Figure 2: Axonal contact and myelination are associated with increased expression of Necl4 in Schwann cells.
Figure 3: Necl4 and Necl1 are localized along the internodes.
Figure 4: Necl4 is the glial binding partner for axonal Necl1.
Figure 5: Interaction between Necl4 and Necl1 mediates Ca2+-independent adhesion of Schwann cells.
Figure 6: Necl-mediated axon-glia interaction is required for myelination.
Figure 7: Expression of a dominant-negative Necl4 inhibits myelination.
Figure 8: Necl4-Fc inhibits remyelination in vivo.

Similar content being viewed by others

References

  1. Jessen, K.R. & Mirsky, R. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6, 671–682 (2005).

    Article  CAS  Google Scholar 

  2. Michailov, G.V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).

    Article  CAS  Google Scholar 

  3. Taveggia, C. et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–694 (2005).

    Article  CAS  Google Scholar 

  4. Wanner, I.B. & Wood, P.M. N-cadherin mediates axon-aligned process growth and cell-cell interaction in rat Schwann cells. J. Neurosci. 22, 4066–4079 (2002).

    Article  CAS  Google Scholar 

  5. Wanner, I.B. et al. Role of N-cadherin in Schwann cell precursors of growing nerves. Glia 54, 439–459 (2006).

    Article  Google Scholar 

  6. Tait, S. et al. An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J. Cell Biol. 150, 657–666 (2000).

    Article  CAS  Google Scholar 

  7. Traka, M., Dupree, J.L., Popko, B. & Karagogeos, D. The neuronal adhesion protein TAG-1 is expressed by Schwann cells and oligodendrocytes and is localized to the juxtaparanodal region of myelinated fibers. J. Neurosci. 22, 3016–3024 (2002).

    Article  CAS  Google Scholar 

  8. Eshed, Y. et al. Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Neuron 47, 215–229 (2005).

    Article  CAS  Google Scholar 

  9. Poliak, S. et al. Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J. Cell Biol. 162, 1149–1160 (2003).

    Article  CAS  Google Scholar 

  10. Sherman, D.L. et al. Neurofascins are required to establish axonal domains for saltatory conduction. Neuron 48, 737–742 (2005).

    Article  CAS  Google Scholar 

  11. Seilheimer, B., Persohn, E. & Schachner, M. Antibodies to the L1 adhesion molecule inhibit Schwann cell ensheathment of neurons in vitro. J. Cell Biol. 109, 3095–3103 (1989).

    Article  CAS  Google Scholar 

  12. Owens, G.C., Boyd, C.J., Bunge, R.P. & Salzer, J.L. Expression of recombinant myelin-associated glycoprotein in primary Schwann cells promotes the initial investment of axons by myelinating Schwann cells. J. Cell Biol. 111, 1171–1182 (1990).

    Article  CAS  Google Scholar 

  13. Haney, C.A. et al. Heterophilic binding of L1 on unmyelinated sensory axons mediates Schwann cell adhesion and is required for axonal survival. J. Cell Biol. 146, 1173–1184 (1999).

    Article  CAS  Google Scholar 

  14. Li, C. et al. Myelination in the absence of myelin-associated glycoprotein. Nature 369, 747–750 (1994).

    Article  CAS  Google Scholar 

  15. Montag, D. et al. Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 13, 229–246 (1994).

    Article  CAS  Google Scholar 

  16. Bartsch, U. Neural CAMS and their role in the development and organization of myelin sheaths. Front. Biosci. 8, d477–d490 (2003).

    Article  Google Scholar 

  17. Poliak, S. & Peles, E. The local differentiation of myelinated axons at nodes of Ranvier. Nat. Rev. Neurosci. 4, 968–980 (2003).

    Article  CAS  Google Scholar 

  18. Spiegel, I. & Peles, E. Cellular junctions of myelinated nerves (Review). Mol. Membr. Biol. 19, 95–101 (2002).

    Article  CAS  Google Scholar 

  19. Spiegel, I. et al. Identification of novel cell-adhesion molecules in peripheral nerves using a signal-sequence trap. Neuron Glia Biol. 2, 27–38 (2006).

    Article  Google Scholar 

  20. Biederer, T. Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules. Genomics 87, 139–150 (2006).

    Article  CAS  Google Scholar 

  21. Takai, Y. & Nakanishi, H. Nectin and afadin: novel organizers of intercellular junctions. J. Cell Sci. 116, 17–27 (2003).

    Article  CAS  Google Scholar 

  22. Fukuhara, H. et al. Association of a lung tumor suppressor TSLC1 with MPP3, a human homologue of Drosophila tumor suppressor Dlg. Oncogene 22, 6160–6165 (2003).

    Article  CAS  Google Scholar 

  23. Shingai, T. et al. Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell-cell adhesion and transmembrane protein localization in epithelial cells. J. Biol. Chem. 278, 35421–35427 (2003).

    Article  CAS  Google Scholar 

  24. Yageta, M. et al. Direct association of TSLC1 and DAL-1, two distinct tumor suppressor proteins in lung cancer. Cancer Res. 62, 5129–5133 (2002).

    CAS  PubMed  Google Scholar 

  25. Zhou, Y. et al. Nectin-like molecule 1 is a protein 4.1N associated protein and recruits protein 4.1N from cytoplasm to the plasma membrane. Biochim. Biophys. Acta 1669, 142–154 (2005).

    Article  CAS  Google Scholar 

  26. Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002).

    Article  CAS  Google Scholar 

  27. Kakunaga, S. et al. Nectin-like molecule-1/TSLL1/SynCAM3: a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes. J. Cell Sci. 118, 1267–1277 (2005).

    Article  CAS  Google Scholar 

  28. Williams, Y.N. et al. Cell adhesion and prostate tumor-suppressor activity of TSLL2/IGSF4C, an immunoglobulin superfamily molecule homologous to TSLC1/IGSF4. Oncogene 25, 1446–1453 (2006).

    Article  CAS  Google Scholar 

  29. Irie, K., Shimizu, K., Sakisaka, T., Ikeda, W. & Takai, Y. Roles and modes of action of nectins in cell-cell adhesion. Semin. Cell Dev. Biol. 15, 643–656 (2004).

    Article  CAS  Google Scholar 

  30. Sara, Y. et al. Selective capability of SynCAM and neuroligin for functional synapse assembly. J. Neurosci. 25, 260–270 (2005).

    Article  CAS  Google Scholar 

  31. Fujita, E., Urase, K., Soyama, A., Kouroku, Y. & Momoi, T. Distribution of RA175/TSLC1/SynCAM, a member of the immunoglobulin superfamily, in the developing nervous system. Brain Res. Dev. Brain Res. 154, 199–209 (2005).

    Article  CAS  Google Scholar 

  32. Ohta, Y. et al. Spatiotemporal patterns of expression of IGSF4 in developing mouse nervous system. Brain Res. Dev. Brain Res. 156, 23–31 (2005).

    Article  CAS  Google Scholar 

  33. Koticha, D. et al. Neurofascin interactions play a critical role in clustering sodium channels, ankyrin G and beta IV spectrin at peripheral nodes of Ranvier. Dev. Biol. 293, 1–12 (2006).

    Article  CAS  Google Scholar 

  34. Lustig, M. et al. Nr-CAM and neurofascin interactions regulate ankyrin G and sodium channel clustering at the node of Ranvier. Curr. Biol. 11, 1864–1869 (2001).

    Article  CAS  Google Scholar 

  35. Koroll, M., Rathjen, F.G. & Volkmer, H. The neural cell recognition molecule neurofascin interacts with syntenin-1, but not with syntenin-2, both of which reveal self-associating activity. J. Biol. Chem. 276, 10646–10654 (2001).

    Article  CAS  Google Scholar 

  36. Gunn-Moore, F.J. et al. A functional FERM domain binding motif in neurofascin. Mol. Cell. Neurosci. 33, 441–446 (2006).

    Article  CAS  Google Scholar 

  37. Hall, S.M. & Gregson, N.A. The in vivo and ultrastructural effects of injection of lysophosphatidyl choline into myelinated peripheral nerve fibres of the adult mouse. J. Cell Sci. 9, 769–789 (1971).

    CAS  PubMed  Google Scholar 

  38. Thomas, P.K. & Olsson, Y. Microscopic anatomy and function of the connective tissue components of peripheral nerve. in Peripheral Neuropathy (eds. Dyck, P.J., Thomas, P.K., Lambert, E.H. and Bunge, R.) 97–120 (W.B. Saunders., Philadelphia, 1984).

    Google Scholar 

  39. Dugandzija-Novakovic, S., Koszowski, A.G., Levinson, S.R. & Shrager, P. Clustering of Na+ channels and node of Ranvier formation in remyelinating axons. J. Neurosci. 15, 492–503 (1995).

    Article  CAS  Google Scholar 

  40. Lemke, G. & Axel, R. Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell 40, 501–508 (1985).

    Article  CAS  Google Scholar 

  41. Dong, X. et al. Crystal structure of the V domain of human Nectin-like molecule-1/Syncam3/Tsll1/Igsf4b, a neural tissue–specific immunoglobulin-like cell-cell adhesion molecule. J. Biol. Chem. 281, 10610–10617 (2006).

    Article  CAS  Google Scholar 

  42. Ohno, N. et al. Expression of protein 4.1G in Schwann cells of the peripheral nervous system. J. Neurosci. Res. 84, 568–577 (2006).

    Article  CAS  Google Scholar 

  43. Poliak, S., Matlis, S., Ullmer, C., Scherer, S.S. & Peles, E. Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J. Cell Biol. 159, 361–372 (2002).

    Article  CAS  Google Scholar 

  44. Trapp, B.D., Andrews, S.B., Wong, A., O'Connell, M. & Griffin, J.W. Colocalization of the myelin-associated glycoprotein and the microfilament components, F-actin and spectrin, in Schwann cells of myelinated nerve fibres. J. Neurocytol. 18, 47–60 (1989).

    Article  CAS  Google Scholar 

  45. Chan, J.R. et al. The polarity protein Par-3 directly interacts with p75NTR to regulate myelination. Science 314, 832–836 (2006).

    Article  CAS  Google Scholar 

  46. Spiegel, I., Salomon, D., Erne, B., Schaeren-Wiemers, N. & Peles, E. Caspr3 and caspr4, two novel members of the caspr family, are expressed in the nervous system and interact with PDZ domains. Mol. Cell. Neurosci. 20, 283–297 (2002).

    Article  CAS  Google Scholar 

  47. Sokal, R.R. & Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research (W.H. Freeman & Company, New York, 1994).

    Google Scholar 

  48. Schafer, D.P., Bansal, R., Hedstrom, K.L., Pfeiffer, S.E. & Rasband, M.N. Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts? J. Neurosci. 24, 3176–3185 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Y. Takai for his generous gift of plasmids and antibodies and J. Chan for his comments. This work was supported by US National Institutes of Health grants NS50220 (E.P.) and NS044916 (M.N.R.), the National Multiple Sclerosis Society, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation's Adelson Program in Neural Repair and Rehabilitation, the US-Israel Binational Science Foundation and the Wolgin Prize for Scientific Excellence (E.P.).

Author information

Authors and Affiliations

Authors

Contributions

I.S. cloned and constructed all expression constructs and probes, generated and purified antibodies, and designed and performed most of the experiments. He was assisted by R.M. in analyzing the myelination data. K.A. performed the cell adhesion assay. O.S.N. and S.S.S contributed to gene expression analysis, Y.E. to the coculture experiments and I.H. to the immunohistochemical analysis. H.S. performed the electron microscopy and M.N.R. conducted the remyelination experiments. E.P. headed the project and prepared the manuscript.

Corresponding author

Correspondence to Elior Peles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Specificity of the antibodies to Necl4. (PDF 519 kb)

Supplementary Fig. 2

Specific immunolabeling for Necl1 and Necl4 in sciatic nerve. (PDF 491 kb)

Supplementary Fig. 3

Necl4 is absent from non–myelinating Schwann cells. (PDF 2734 kb)

Supplementary Fig. 4

Homophilic and heterophilic binding of Necls. (PDF 656 kb)

Supplementary Fig. 5

Necl4–Fc, but not MAG–Fc inhibits myelination. (PDF 1424 kb)

Supplementary Fig. 6

Expression of GFP–Necl4CT and GFP–NF155CT. (PDF 335 kb)

Supplementary Table 1

Summary of the different names used for the CADM gene family. (PDF 87 kb)

Supplementary Methods (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiegel, I., Adamsky, K., Eshed, Y. et al. A central role for Necl4 (SynCAM4) in Schwann cell–axon interaction and myelination. Nat Neurosci 10, 861–869 (2007). https://doi.org/10.1038/nn1915

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing