Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells

Abstract

Unlike the mechanisms involved in the death of neuronal cell bodies, those causing the elimination of processes are not well understood owing to the lack of suitable experimental systems. As the neurotrophin receptor p75NTR is known to restrict the growth of neuronal processes, we engineered mouse embryonic stem (ES) cells to express an Ngfr (p75NTR) cDNA under the control of the Mapt locus (the gene encoding tau), which begins to be active when ES cell–derived progenitors start elongating processes. This caused a progressive, synchronous degeneration of all processes, and a prospective proteomic analysis showed increased levels of the sugar-binding protein galectin-1 in the p75NTR-engineered cells. Function-blocking galectin-1 antibodies prevented the degeneration of processes, and recombinant galectin-1 caused the processes of wild-type neurons to degenerate first, followed by the cell bodies. In vivo, the application of a glutamate receptor agonist, a maneuver known to upregulate p75NTR, led to an increase in the amount of galectin-1 and to the degeneration of neurons and their processes in a galectin-1–dependent fashion. Section of the sciatic nerve also rapidly upregulated levels of p75NTR and galectin-1 in terminal Schwann cells, and the elimination of nerve endings was delayed at the neuromuscular junction of mice lacking Lgals1 (the gene encoding galectin-1). These results indicate that galectin-1 actively participates in the elimination of neuronal processes after lesion, and that engineered ES cells are a useful tool for studying relevant aspects of neuronal degeneration that have been hitherto difficult to analyze.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Ngfr causes the degeneration of neuronal processes before the death of cell bodies.
Figure 2: Identification of galectin-1 in Mapt::Ngfr neurons.
Figure 3: Galectin-1 causes the degeneration of neuronal process.
Figure 4: p75NTR controls galectin-1 levels.
Figure 5: Galectin-1 mediates the degeneration of neurons caused by excitotoxicity.
Figure 6: Delayed elimination of nerve endings in Lgals-null mice.

Similar content being viewed by others

References

  1. Raff, M.C., Whitmore, A.V. & Finn, J.T. Axonal self-destruction and neurodegeneration. Science 296, 868–871 (2002).

    Article  CAS  Google Scholar 

  2. Coleman, M. Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 6, 889–898 (2005).

    Article  CAS  Google Scholar 

  3. Williams, D.W., Kondo, S., Krzyzanowska, A., Hiromi, Y. & Truman, J.W. Local caspase activity directs engulfment of dendrites during pruning. Nat. Neurosci. 9, 1234–1236 (2006).

    Article  CAS  Google Scholar 

  4. Sagot, Y. et al. Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J. Neurosci. 15, 7727–7733 (1995).

    Article  CAS  Google Scholar 

  5. Whitmore, A.V., Lindsten, T., Raff, M.C. & Thompson, C.B. The proapoptotic proteins Bax and Bak are not involved in Wallerian degeneration. Cell Death Differ. 10, 260–261 (2003).

    Article  CAS  Google Scholar 

  6. Brown, M.C., Booth, C.M., Lunn, E.R. & Perry, V.H. Delayed response to denervation in muscles of C57BL/Ola mice. Neuroscience 43, 279–283 (1991).

    Article  CAS  Google Scholar 

  7. Chen, S. & Bisby, M.A. Impaired motor axon regeneration in the C57BL/Ola mouse. J. Comp. Neurol. 333, 449–454 (1993).

    Article  CAS  Google Scholar 

  8. Bittner, G.D. Long-term survival of anucleate axons and its implications for nerve regeneration. Trends Neurosci. 14, 188–193 (1991).

    Article  CAS  Google Scholar 

  9. Perry, V.H., Lunn, E.R., Brown, M.C., Cahusac, S. & Gordon, S. Evidence that the rate of Wallerian degeneration is controlled by a single autosomal dominant gene. Eur. J. Neurosci. 2, 408–413 (1990).

    Article  CAS  Google Scholar 

  10. Mack, T.G. et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 4, 1199–1206 (2001).

    Article  CAS  Google Scholar 

  11. Coleman, M.P. et al. An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. Proc. Natl. Acad. Sci. USA 95, 9985–9990 (1998).

    Article  CAS  Google Scholar 

  12. Hoopfer, E.D. et al. Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50, 883–895 (2006).

    Article  CAS  Google Scholar 

  13. Parson, S.H., Mackintosh, C.L. & Ribchester, R.R. Elimination of motor nerve terminals in neonatal mice expressing a gene for slow Wallerian degeneration (C57Bl/Wlds). Eur. J. Neurosci. 9, 1586–1592 (1997).

    Article  CAS  Google Scholar 

  14. Bibel, M. et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat. Neurosci. 7, 1003–1009 (2004).

    Article  CAS  Google Scholar 

  15. Dechant, G. & Barde, Y.A. The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat. Neurosci. 5, 1131–1136 (2002).

    Article  CAS  Google Scholar 

  16. Zagrebelsky, M. et al. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J. Neurosci. 25, 9989–9999 (2005).

    Article  CAS  Google Scholar 

  17. Majdan, M. et al. Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis. J. Neurosci. 17, 6988–6998 (1997).

    Article  CAS  Google Scholar 

  18. Tucker, K.L., Meyer, M. & Barde, Y.A. Neurotrophins are required for nerve growth during development. Nat. Neurosci. 4, 29–37 (2001).

    Article  CAS  Google Scholar 

  19. Zhai, Q. et al. Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron 39, 217–225 (2003).

    Article  CAS  Google Scholar 

  20. Finn, J.T. et al. Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases. J. Neurosci. 20, 1333–1341 (2000).

    Article  CAS  Google Scholar 

  21. Perillo, N.L., Pace, K.E., Seilhamer, J.J. & Baum, L.G. Apoptosis of T cells mediated by galectin-1. Nature 378, 736–739 (1995).

    Article  CAS  Google Scholar 

  22. Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764 (2003).

    Article  CAS  Google Scholar 

  23. Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  Google Scholar 

  24. Maroney, A.C. et al. Cep-1347 (KT7515), a semisynthetic inhibitor of the mixed lineage kinase family. J. Biol. Chem. 276, 25302–25308 (2001).

    Article  CAS  Google Scholar 

  25. Saporito, M.S. et al. Preservation of cholinergic activity and prevention of neuron death by CEP-1347/KT-7515 following excitotoxic injury of the nucleus basalis magnocellularis. Neuroscience 86, 461–472 (1998).

    Article  CAS  Google Scholar 

  26. Wang, L.H., Besirli, C.G. & Johnson, E.M., Jr Mixed-lineage kinases: a target for the prevention of neurodegeneration. Annu. Rev. Pharmacol. Toxicol. 44, 451–474 (2004).

    Article  CAS  Google Scholar 

  27. Springer, J.E., Koh, S., Tayrien, M.W. & Loy, R. Basal forebrain magnocellular neurons stain for nerve growth factor receptor: correlation with cholinergic cell bodies and effects of axotomy. J. Neurosci. Res. 17, 111–118 (1987).

    Article  CAS  Google Scholar 

  28. Oh, J.D., Chartisathian, K., Chase, T.N. & Butcher, L.L. Overexpression of neurotrophin receptor p75 contributes to the excitotoxin-induced cholinergic neuronal death in rat basal forebrain. Brain Res. 853, 174–185 (2000).

    Article  CAS  Google Scholar 

  29. Aggarwal, P. & Gibbs, R.B. Estrogen replacement does not prevent the loss of choline acetyltransferase–positive cells in the basal forebrain following either neurochemical or mechanical lesions. Brain Res. 882, 75–85 (2000).

    Article  CAS  Google Scholar 

  30. Reynolds, M.L. & Woolf, C.J. Terminal Schwann cells elaborate extensive processes following denervation of the motor endplate. J. Neurocytol. 21, 50–66 (1992).

    Article  CAS  Google Scholar 

  31. Yan, Q. & Johnson, E.M., Jr . An immunohistochemical study of the nerve growth factor receptor in developing rats. J. Neurosci. 8, 3481–3498 (1988).

    Article  CAS  Google Scholar 

  32. Yeo, T.T. et al. Absence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity, and target innervation. J. Neurosci. 17, 7594–7605 (1997).

    Article  CAS  Google Scholar 

  33. Jaffe, A.B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    Article  CAS  Google Scholar 

  34. Yamashita, T., Tucker, K.L. & Barde, Y.A. Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24, 585–593 (1999).

    Article  CAS  Google Scholar 

  35. Reichardt, L.F. Neurotrophin-regulated signalling pathways. Phil. Trans. R. Soc. Lond. B 361, 1545–1564 (2006).

    Article  CAS  Google Scholar 

  36. Hahn, H.P. et al. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c–independent T cell death. Cell Death Differ. 11, 1277–1286 (2004).

    Article  CAS  Google Scholar 

  37. Puche, A.C., Poirier, F., Hair, M., Bartlett, P.F. & Key, B. Role of galectin-1 in the developing mouse olfactory system. Dev. Biol. 179, 274–287 (1996).

    Article  CAS  Google Scholar 

  38. Poirier, F. & Robertson, E.J. Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin. Development 119, 1229–1236 (1993).

    CAS  PubMed  Google Scholar 

  39. Horie, H. et al. Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. J. Neurosci. 19, 9964–9974 (1999).

    Article  CAS  Google Scholar 

  40. Horie, H. et al. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J. Neurosci. 24, 1873–1880 (2004).

    Article  CAS  Google Scholar 

  41. McGraw, J. et al. Regulation of neuronal and glial galectin-1 expression by peripheral and central axotomy of rat primary afferent neurons. Exp. Neurol. 195, 103–114 (2005).

    Article  CAS  Google Scholar 

  42. McGraw, J. et al. Galectin-1 in regenerating motoneurons. Eur. J. Neurosci. 20, 2872–2880 (2004).

    Article  CAS  Google Scholar 

  43. Reichert, F., Saada, A. & Rotshenker, S. Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: phagocytosis and the galactose-specific lectin MAC-2. J. Neurosci. 14, 3231–3245 (1994).

    Article  CAS  Google Scholar 

  44. Kato, T. et al. Galectin-1 is a component of neurofilamentous lesions in sporadic and familial amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 282, 166–172 (2001).

    Article  CAS  Google Scholar 

  45. Unlu, M., Morgan, M.E. & Minden, J.S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Dechant and A. Le Bivic for discussions, P. Barker for gifts of reagents, R. Kuhn, J. Van Oostrum and J. Voshol (Novartis) for making our collaboration possible, P.-Y. Mantel for help with the generation of ES cell lines and T. Matsumoto, V. Nikoletopoulou and V. Bischoff for comments on the experiments. This study was supported by the Swiss National Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.B. developed the ES cell–based differentiation system and generated the Mapt::Ngfr cells, and C.A. generated the Ngfr−/− ES cells. S.H. and D.M. carried out the proteomic analysis. S.B. carried out the in vivo rat experiments, and S.L. and M.R. analyzed the axotomy experiments. F.P. generated the Lgals1 mutant mice. N.P. and Y.-A.B. designed and carried out all other experiments.

Corresponding author

Correspondence to Yves-Alain Barde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plachta, N., Annaheim, C., Bissière, S. et al. Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells. Nat Neurosci 10, 712–719 (2007). https://doi.org/10.1038/nn1897

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing