Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling for interstimulus perceptual variance abolishes N170 face selectivity

Abstract

Establishing when and how the human brain differentiates between object categories is key to understanding visual cognition. Event-related potential (ERP) investigations have led to the consensus that faces selectively elicit a negative wave peaking 170 ms after presentation, the 'N170'. In such experiments, however, faces are nearly always presented from a full front view, whereas other stimuli are more perceptually variable, leading to uncontrolled interstimulus perceptual variance (ISPV). Here, we compared ERPs elicited by faces, cars and butterflies while—for the first time—controlling ISPV (low or high). Surprisingly, the N170 was sensitive, not to object category, but to ISPV. In addition, we found category effects independent of ISPV 70 ms earlier than has been generally reported. These results demonstrate early ERP category effects in the visual domain, call into question the face selectivity of the N170 and establish ISPV as a critical factor to control in experiments relying on multitrial averaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visualizing interstimulus perceptual variance.
Figure 2: Visualization of ISPV in Experiment 1 (left) and 2 (right).
Figure 3: Design of Experiment 3.
Figure 4: Event-related potential results from Experiment 1.
Figure 5: Topographic segmentation analysis and amount of variance explained by maps P1f (faces) and P1c (cars) in the P1 range in Experiment 1.
Figure 6: Event-related potential results from Experiment 2.
Figure 7: Event-related potential results from Experiment 3.

Similar content being viewed by others

References

  1. Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8, 551–565 (1996).

    Article  Google Scholar 

  2. Jeffreys, D.A. Event-related potential studies of face and object processing. Vis. Cogn. 3, 1–38 (1996).

    Article  Google Scholar 

  3. Eimer, M. & McCarthy, R.A. Prosopagnosia and structural encoding of faces: evidence from event-related potentials. Neuroreport 10, 255–259 (1999).

    Article  CAS  Google Scholar 

  4. Eimer, M. Effects of face inversion on the structural encoding and recognition of faces. Evidence from event-related brain potentials. Brain Res. Cogn. Brain Res. 10, 145–158 (2000).

    Article  CAS  Google Scholar 

  5. Itier, R.J. & Taylor, M.J. N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cereb. Cortex 14, 132–142 (2004).

    Article  Google Scholar 

  6. Itier, R.J., Latinus, M. & Taylor, M.J. Face, eye and object early processing: what is the face specificity? Neuroimage 29, 667–676 (2006).

    Article  Google Scholar 

  7. Liu, J., Higuchi, M., Marantz, A. & Kanwisher, N. The selectivity of the occipitotemporal M170 for faces. Neuroreport 11, 337–341 (2000).

    Article  CAS  Google Scholar 

  8. Xu, Y., Liu, J. & Kanwisher, N. The M170 is selective for faces, not for expertise. Neuropsychologia 43, 588–597 (2005).

    Article  Google Scholar 

  9. Rossion, B., Curran, T. & Gauthier, I. A defense of the subordinate-level expertise account for the N170 component. Cognition 85, 189–196 (2002).

    Article  Google Scholar 

  10. Gauthier, I., Curran, T., Curby, K.M. & Collins, D. Perceptual interference supports a nonmodular account of face processing. Nat. Neurosci. 6, 428–432 (2003).

    Article  CAS  Google Scholar 

  11. Pegna, A.J., Khateb, A., Michel, C.M. & Landis, T. Visual recognition of faces, objects and words using degraded stimuli: where and when it occurs. Hum. Brain Mapp. 22, 300–311 (2004).

    Article  Google Scholar 

  12. Lueschow, A. et al. Looking for faces: attention modulates early occipitotemporal object processing. Psychophysiology 41, 350–360 (2004).

    Article  Google Scholar 

  13. Carmel, D. & Bentin, S. Domain specificity versus expertise: factors influencing distinct processing of faces. Cognition 83, 1–29 (2002).

    Article  Google Scholar 

  14. Cauquil, A.S., Edmonds, G.E. & Taylor, M.J. Is the face-sensitive N170 the only ERP not affected by selective attention? Neuroreport 11, 2167–2171 (2000).

    Article  CAS  Google Scholar 

  15. Rossion, B., Gauthier, I., Goffaux, V., Tarr, M.J. & Crommelinck, M. Expertise training with novel objects leads to left-lateralized face-like electrophysiological responses. Psychol. Sci. 13, 250–257 (2002).

    Article  CAS  Google Scholar 

  16. Hillyard, S.A. & Picton, T.W. Electrophysiology of cognition. in Handbook of Physiology: Section 1. The Nervous System (ed. F. Plum) 519–584 (Waverly Press, Bethesda, Maryland, 1987).

    Google Scholar 

  17. Tarkiainen, A., Cornelissen, P.L. & Salmelin, R. Dynamics of visual feature analysis and object-level processing in face versus letter-string perception. Brain 125, 1125–1136 (2002).

    Article  CAS  Google Scholar 

  18. Cornelissen, P., Tarkiainen, A., Helenius, P. & Salmelin, R. Cortical effects of shifting letter position in letter strings of varying length. J. Cogn. Neurosci. 15, 731–746 (2003).

    Article  Google Scholar 

  19. Rossion, B., Joyce, C.A., Cottrell, G.W. & Tarr, M.J. Early lateralization and orientation tuning for face, word and object processing in the visual cortex. Neuroimage 20, 1609–1624 (2003).

    Article  Google Scholar 

  20. Liu, J., Harris, A. & Kanwisher, N. Stages of processing in face perception: an MEG study. Nat. Neurosci. 5, 910–916 (2002).

    Article  CAS  Google Scholar 

  21. Schweinberger, S.R., Pickering, E.C., Jentzsch, I., Burton, A.M. & Kaufmann, J.M. Event-related brain potential evidence for a response of inferior temporal cortex to familiar face repetitions. Brain Res. Cogn. Brain Res. 14, 398–409 (2002).

    Article  Google Scholar 

  22. Schweinberger, S.R. & Burton, A.M. Covert recognition and the neural system for face processing. Cortex 39, 9–30 (2003).

    Article  Google Scholar 

  23. Boehm, S.G., Klostermann, E.C. & Paller, K.A. Neural correlates of perceptual contributions to nondeclarative memory for faces. Neuroimage 30, 1021–1029 (2006).

    Article  Google Scholar 

  24. Allison, T. et al. Face recognition in human extrastriate cortex. J. Neurophysiol. 71, 821–825 (1994).

    Article  CAS  Google Scholar 

  25. Allison, T., Puce, A., Spencer, D.D. & McCarthy, G. Electrophysiological studies of human face perception. I: potentials generated in occipitotemporal cortex by face and nonface stimuli. Cereb. Cortex 9, 415–430 (1999).

    Article  CAS  Google Scholar 

  26. Seeck, M. et al. Evidence for rapid face recognition from human scalp and intracranial electrodes. Neuroreport 8, 2749–2754 (1997).

    Article  CAS  Google Scholar 

  27. Seeck, M. et al. Intracranial neurophysiological correlates related to the processing of faces. Epilepsy Behav. 2, 545–557 (2001).

    Article  CAS  Google Scholar 

  28. Krolak-Salmon, P., Henaff, M.A., Vighetto, A., Bertrand, O. & Mauguiere, F. Early amygdala reaction to fear spreading in occipital, temporal and frontal cortex: a depth electrode ERP study in human. Neuron 42, 665–676 (2004).

    Article  CAS  Google Scholar 

  29. Bennett, T.L. Cognitive effects of epilepsy and anticonvulsant medications. in The Neuropsychology of Epilepsy (ed. T.L. Bennett) 73–95 (Plenum Press, New York, 1992).

    Chapter  Google Scholar 

  30. Vuilleumier, P., Henson, R.N., Driver, J. & Dolan, R.J. Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat. Neurosci. 5, 491–499 (2002).

    Article  CAS  Google Scholar 

  31. Eimer, M. The face-specific N170 component reflects late stages in the structural encoding of faces. Neuroreport 11, 2319–2324 (2000).

    Article  CAS  Google Scholar 

  32. Herrmann, M.J., Ehlis, A.C., Ellgring, H. & Fallgatter, A.J. Early stages (P100) of face perception in humans as measured with event-related potentials (ERPs). J. Neural Transm. 112, 1073–1081 (2005).

    Article  CAS  Google Scholar 

  33. Herrmann, M.J., Ehlis, A.C., Muehlberger, A. & Fallgatter, A.J. Source localization of early stages of face processing. Brain Topogr. 18, 77–85 (2005).

    Article  Google Scholar 

  34. Schendan, H.E., Ganis, G. & Kutas, M. Neurophysiological evidence for visual perceptual categorization of words and faces within 150 ms. Psychophysiology 35, 240–251 (1998).

    Article  CAS  Google Scholar 

  35. Linkenkaer-Hansen, K. et al. Face-selective processing in human extrastriate cortex around 120 ms after stimulus onset revealed by magneto- and electroencephalography. Neurosci. Lett. 253, 147–150 (1998).

    Article  CAS  Google Scholar 

  36. Grill-Spector, K. & Malach, R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. (Amst.) 107, 293–321 (2001).

    Article  CAS  Google Scholar 

  37. CVL face database. Faculty of Computer and Information Science. University of Ljubljana, Slovenia.http://www.lrv.fri.uni-lj.si/facedb.html.

  38. Lehmann, D. Principles of spatial analysis. in Handbook of Electroencephalography and Clinical Neurophysiology (ed. A.S. Gevins & A. Remond) 309–354 (Elsevier, Amsterdam, 1987).

    Google Scholar 

  39. Michel, C.M. et al. Electric source imaging of human brain functions. Brain Res. Brain Res. Rev. 36, 108–118 (2001).

    Article  CAS  Google Scholar 

  40. Pegna, A.J. et al. Unraveling the cerebral dynamics of mental imagery. Hum. Brain Mapp. 5, 410–421 (1997).

    Article  CAS  Google Scholar 

  41. Michel, C.M., Seeck, M. & Landis, T. Spatiotemporal dynamics of human cognition. News Physiol. Sci. 14, 206–214 (1999).

    PubMed  Google Scholar 

  42. Pascual-Marqui, R.D., Michel, C.M. & Lehmann, D. Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans. Biomed. Eng. 42, 658–665 (1995).

    Article  CAS  Google Scholar 

  43. Lehmann, D. & Skrandies, W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr. Clin. Neurophysiol. 48, 609–621 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Roberts, S. Boehm, D. Linden, S. Tipper, K. Djali, E. Stevens, M. Thoré, C. Willmes and P. Zeller for assistance and comments. Some of the face images used in this work have been provided by the Computer Vision Laboratory, University of Ljubljana, Slovenia. Data were analyzed using “Cartool” (http://brainmapping.unige.ch/cartool.php, by D. Brunet, Center for Biomedical Imaging of Geneva and Lausanne, Switzerland). G.T. is funded by the Biotechnology and Biological Science Research Council UK (S18007) and the Economic and Social Research Council (RES-000-23-0095). C.D.M. is funded by the Fyssen Foundation. A.J.P. is funded in part by the Swiss National Foundation for Scientific Research (grant 320000-109928). P.D. is funded by the Biotechnology and Biological Science Research Council UK.

Author information

Authors and Affiliations

Authors

Contributions

G.T. conceived Experiments 1 and 3, analyzed ERP data of Experiment 1, supervised overall data analysis and wrote the manuscript. C.D.M. conceived Experiment 2 and analyzed ERP data of Experiment 2 and 3. P.D. performed pixel-wise correlation analyses, provided expertise on neuroanatomical interpretations and wrote parts of the manuscript. A.J.P. performed the segmentation analyses and wrote parts of the manuscript.

Corresponding author

Correspondence to Guillaume Thierry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thierry, G., Martin, C., Downing, P. et al. Controlling for interstimulus perceptual variance abolishes N170 face selectivity. Nat Neurosci 10, 505–511 (2007). https://doi.org/10.1038/nn1864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing