Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A deficit in the ability to form new human memories without sleep

Abstract

Evidence indicates that sleep after learning is critical for the subsequent consolidation of human memory. Whether sleep before learning is equally essential for the initial formation of new memories, however, remains an open question. We report that a single night of sleep deprivation produces a significant deficit in hippocampal activity during episodic memory encoding, resulting in worse subsequent retention. Furthermore, these hippocampal impairments instantiate a different pattern of functional connectivity in basic alertness networks of the brainstem and thalamus. We also find that unique prefrontal regions predict the success of encoding for sleep-deprived individuals relative to those who have slept normally. These results demonstrate that an absence of prior sleep substantially compromises the neural and behavioral capacity for committing new experiences to memory. It therefore appears that sleep before learning is critical in preparing the human brain for next-day memory formation—a worrying finding considering society's increasing erosion of sleep time.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: fMRI regions of significant activation during all encoding trials (relative to fixation baseline) in the sleep control and sleep deprivation groups separately (full coordinates given in Table 3).
Figure 2: fMRI group-level encoding differences.
Figure 3: Group-level differences in hippocampal functional connectivity.
Figure 4: fMRI group-level differences in Dm activation in the sleep deprivation (SD) relative to the sleep control (SC) group.
Figure 5: fMRI correlation analysis.

References

  1. Walker, M.P. & Stickgold, R. Sleep, memory, and plasticity. Annu. Rev. Psychol. 57, 139–166 (2006).

    Article  PubMed  Google Scholar 

  2. Walker, M.P. & Stickgold, R. Sleep-dependent learning and memory consolidation. Neuron 44, 121–133 (2004).

    CAS  Article  PubMed  Google Scholar 

  3. Curcio, G., Ferrara, M. & De Gennaro, L. Sleep loss, learning capacity and academic performance. Sleep. Med. Rev. 10, 323–337 (2006).

    Article  PubMed  Google Scholar 

  4. Nissen, C. et al. Impaired sleep-related memory consolidation in primary insomnia—a pilot study. Sleep 29, 1068–1073 (2006).

    Article  PubMed  Google Scholar 

  5. Hicks, R.A., Paulus, M.J. & Johnson, J.C. Effect of REM sleep deprivation on electric shock threshold in rats. Psychol. Rep. 32, 1242 (1973).

    CAS  Article  PubMed  Google Scholar 

  6. Plumer, S.I., Matthews, L., Tucker, M. & Cook, T.M. The water tank technique: avoidance conditioning as a function of water level and pedestal size. Physiol. Behav. 12, 285–287 (1974).

    CAS  Article  PubMed  Google Scholar 

  7. Stern, W.C. Acquisition impairments following rapid eye movement sleep deprivation in rats. Physiol. Behav. 7, 345–352 (1971).

    CAS  Article  PubMed  Google Scholar 

  8. Smith, C. Sleep states and learning: a review of the animal literature. Neurosci. Biobehav. Rev. 9, 157–168 (1985).

    CAS  Article  PubMed  Google Scholar 

  9. Guan, Z., Peng, X. & Fang, J. Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus. Brain Res. 1018, 38–47 (2004).

    CAS  Article  PubMed  Google Scholar 

  10. McGrath, M.J. & Cohen, D.B. REM sleep facilitation of adaptive waking behavior: a review of the literature. Psychol. Bull. 85, 24–57 (1978).

    CAS  Article  PubMed  Google Scholar 

  11. Gruart-Masso, A., Nadal-Alemany, R., Coll-Andreu, M., Portell-Cortes, I. & Marti-Nicolovius, M. Effects of pretraining paradoxical sleep deprivation upon two-way active avoidance. Behav. Brain Res. 72, 181–183 (1995).

    CAS  Article  PubMed  Google Scholar 

  12. van Hulzen, Z.J. & Coenen, A.M. Effects of paradoxical sleep deprivation on two-way avoidance acquisition. Physiol. Behav. 29, 581–587 (1982).

    CAS  Article  PubMed  Google Scholar 

  13. McDermott, C.M. et al. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J. Neurosci. 23, 9687–9695 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Davis, C.J., Harding, J.W. & Wright, J.W. REM sleep deprivation-induced deficits in the latency-to-peak induction and maintenance of long-term potentiation within the CA1 region of the hippocampus. Brain Res. 973, 293–297 (2003).

    CAS  Article  PubMed  Google Scholar 

  15. Durmer, J.S. & Dinges, D.F. Neurocognitive consequences of sleep deprivation. Semin. Neurol. 25, 117–129 (2005).

    Article  PubMed  Google Scholar 

  16. Doran, S.M., Van Dongen, H.P. & Dinges, D.F. Sustained attention performance during sleep deprivation: evidence of state instability. Arch. Ital. Biol. 139, 253–267 (2001).

    CAS  PubMed  Google Scholar 

  17. Kelley, W.M. et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron 20, 927–936 (1998).

    CAS  Article  PubMed  Google Scholar 

  18. Wagner, A.D. et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188–1191 (1998).

    CAS  Article  PubMed  Google Scholar 

  19. Brewer, J.B., Zhao, Z., Desmond, J.E., Glover, G.H. & Gabrieli, J.D. Making memories: brain activity that predicts how well visual experience will be remembered. Science 281, 1185–1187 (1998).

    CAS  Article  PubMed  Google Scholar 

  20. Rugg, M.D., Otten, L.J. & Henson, R.N. The neural basis of episodic memory: evidence from functional neuroimaging. Phil. Trans. R. Soc. Lond. B 357, 1097–1110 (2002).

    Article  Google Scholar 

  21. Henson, R.N., Rugg, M.D., Shallice, T., Josephs, O. & Dolan, R.J. Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J. Neurosci. 19, 3962–3972 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Kirchhoff, B.A., Wagner, A.D., Maril, A. & Stern, C.E. Prefrontal-temporal circuitry for episodic encoding and subsequent memory. J. Neurosci. 20, 6173–6180 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Otten, L.J. & Rugg, M.D. Task-dependency of the neural correlates of episodic encoding as measured by fMRI. Cereb. Cortex 11, 1150–1160 (2001).

    CAS  Article  PubMed  Google Scholar 

  24. Friston, K.J. et al. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218–229 (1997).

    CAS  PubMed  Google Scholar 

  25. Jackson, O., III. & Schacter, D.L. Encoding activity in anterior medial temporal lobe supports subsequent associative recognition. Neuroimage 21, 456–462 (2004).

    Article  PubMed  Google Scholar 

  26. Wagner, A.D., Shannon, B.J., Kahn, I. & Buckner, R.L. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453 (2005).

    Article  PubMed  Google Scholar 

  27. Moruzzi, G. & Magoun, H.W. Brain stem reticular formation and activation of the EEG. 1949 [classical article]. J. Neuropsychiatry Clin. Neurosci. 7, 251–267 (1995).

    CAS  Article  PubMed  Google Scholar 

  28. Saper, C.B., Chou, T.C. & Scammell, T.E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–731 (2001).

    CAS  Article  PubMed  Google Scholar 

  29. Paller, K.A. & Wagner, A.D. Observing the transformation of experience into memory. Trends Cogn. Sci. 6, 93–102 (2002).

    Article  PubMed  Google Scholar 

  30. Eichenbaum, H. A cortical-hippocampal system for declarative memory. Nat. Rev. Neurosci. 1, 41–50 (2000).

    CAS  Article  PubMed  Google Scholar 

  31. Eichenbaum, H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44, 109–120 (2004).

    CAS  Article  PubMed  Google Scholar 

  32. Drummond, S.P., Smith, M.T., Orff, H.J., Chengazi, V. & Perlis, M.L. Functional imaging of the sleeping brain: review of findings and implications for the study of insomnia. Sleep Med. Rev. 8, 227–242 (2004).

    Article  PubMed  Google Scholar 

  33. Sei, H., Saitoh, D., Yamamoto, K., Morita, K. & Morita, Y. Differential effect of short-term REM sleep deprivation on NGF and BDNF protein levels in the rat brain. Brain Res. 877, 387–390 (2000).

    CAS  Article  PubMed  Google Scholar 

  34. Basheer, R., Strecker, R.E., Thakkar, M.M. & McCarley, R.W. Adenosine and sleep-wake regulation. Prog. Neurobiol. 73, 379–396 (2004).

    CAS  Article  PubMed  Google Scholar 

  35. Frankland, P.W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    CAS  Article  PubMed  Google Scholar 

  36. Marr, D. A theory for cerebral neocortex. Proc. R. Soc. Lond. B 176, 161–234 (1970).

    CAS  Article  PubMed  Google Scholar 

  37. McClelland, J.L., McNaughton, B.L. & O'Reilly, R.C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    Article  PubMed  Google Scholar 

  38. Ellenbogen, J.M., Hulbert, J.C., Stickgold, R., Dinges, D.F. & Thompson-Schill, S.L. Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference. Curr. Biol. 16, 1290–1294 (2006).

    CAS  Article  PubMed  Google Scholar 

  39. Blumenfeld, R.S. & Ranganath, C. Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J. Neurosci. 26, 916–925 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Gutchess, A.H. et al. Aging and the neural correlates of successful picture encoding: frontal activations compensate for decreased medial-temporal activity. J. Cogn. Neurosci. 17, 84–96 (2005).

    Article  PubMed  Google Scholar 

  41. Chee, M.W. & Choo, W.C. Functional imaging of working memory after 24 hr of total sleep deprivation. J. Neurosci. 24, 4560–4567 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Weissman, D.H., Roberts, K.C., Visscher, K.M. & Woldorff, M.G. The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006).

    CAS  Article  PubMed  Google Scholar 

  43. Drummond, S.P. et al. Altered brain response to verbal learning following sleep deprivation. Nature 403, 655–657 (2000).

    CAS  Article  PubMed  Google Scholar 

  44. Paller, K.A., Kutas, M. & Mayes, A.R. Neural correlates of encoding in an incidental learning paradigm. Electroencephalogr. Clin. Neurophysiol. 67, 360–371 (1987).

    CAS  Article  PubMed  Google Scholar 

  45. Macmillan, N.A. & Creelman, C.D. Detection Theory: A User's Guide (Cambridge University Press, New York, 1991).

    Google Scholar 

  46. Rugg, M.D., Henson, R.N. & Robb, W.G. Neural correlates of retrieval processing in the prefrontal cortex during recognition and exclusion tasks. Neuropsychologia 41, 40–52 (2003).

    Article  PubMed  Google Scholar 

  47. Friston, K. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995).

    Article  Google Scholar 

  48. Friston, K.J. et al. Event-related fMRI: characterizing differential responses. Neuroimage 7, 30–40 (1998).

    CAS  Article  PubMed  Google Scholar 

  49. Buchel, C., Holmes, A.P., Rees, G. & Friston, K.J. Characterizing stimulus-response functions using nonlinear regressors in parametric fMRI experiments. Neuroimage 8, 140–148 (1998).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Buckner, M. Rugg, R. Stickgold and E. Robertson for their insightful and helpful comments regarding these findings, and H. O'Leary for technical magnetic resonance imaging assistance. This work was supported in part by grants from the US National Institutes of Health (MH69,935 (M.P.W.); NS48,242 (S.-S.Y); RR19,703 (F.A.J.)) and the American Academy of Sleep Medicine (M.P.W.).

Author information

Authors and Affiliations

Authors

Contributions

S.-S.Y.: designing experimental protocols, conducting the experiments, analyzing the data and writing the manuscripts. P.T.H.: conducting the experiments, analyzing the data and writing the manuscript. N.G.: conducting the experiments, analyzing the data and writing the manuscript. F.A.J.: designing experimental protocols and writing the manuscript. M.P.W.: designing experimental protocols, conducting the experiments, analyzing the data and writing the manuscript.

Corresponding author

Correspondence to Matthew P Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

fMRI group level encoding differences (depicted in the manuscript as Figures 2 and 4), displayed at the more liberal significance of P < 0.005; ≥ 5 contiguous voxels on glass brain MIP plots. (PDF 96 kb)

Supplementary Fig. 2

fMRI correlation analysis. (PDF 172 kb)

Supplementary Fig. 3

fMRI correlation analysis. (PDF 112 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoo, SS., Hu, P., Gujar, N. et al. A deficit in the ability to form new human memories without sleep. Nat Neurosci 10, 385–392 (2007). https://doi.org/10.1038/nn1851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1851

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing