Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ongoing eye movements constrain visual perception

Abstract

Eye movements markedly change the pattern of retinal stimulation. To maintain stable vision, the brain possesses a variety of mechanisms that compensate for the retinal consequences of eye movements. However, eye movements may also be important for resolving the ambiguities often posed by visual inputs, because motor commands contain additional spatial information that is necessarily absent from retinal signals. To test this possibility, we used a perceptually ambiguous stimulus composed of four line segments, consistent with a shape whose vertices were occluded. In a passive condition, subjects fixated a spot while the shape translated along a certain trajectory. In several active conditions, the spot, occluder and shape translated such that when subjects tracked the spot, they experienced the same retinal stimulus as during fixation. We found that eye movements significantly promoted perceptual coherence compared to fixation. These results indicate that eye movement information constrains the perceptual interpretation of visual inputs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimulus and methods.
Figure 2: Comparison of retinal slips across eye movement conditions that we performed in this study.
Figure 3: Despite similar retinal stimulation, tracking promoted perceptual coherence over fixation.
Figure 4: Variant of our stimulus used to obtain an objective measure of perceptual coherence, and results using this measure.
Figure 5: Our effects did not depend on shape.
Figure 6: Investigating how eye movements influence coherence with moving objects.
Figure 7: Direction judgment, a measure of perceptual coherence, was highly dependent on eye movement direction.
Figure 8: Our effects in Figure 7 could not be explained by the mere presence of world-centered and/or retinal motion.

Similar content being viewed by others

References

  1. Bridgeman, B., Hendry, D. & Stark, L. Failure to detect displacement of the visual world during saccadic eye movements. Vision Res. 15, 719–722 (1975).

    Article  CAS  Google Scholar 

  2. Grimes, J. On the failure to detect changes in scenes across saccades. in Perception 5 (Vancouver Studies in Cognitive Science) (ed. Akins, K.) 89–109 (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  3. Henderson, J.M. & Hollingworth, A. Global transsaccadic change blindness during scene perception. Psychol. Sci. 14, 493–497 (2003).

    Article  Google Scholar 

  4. McConkie, G.W. & Currie, C.B. Visual stability across saccades while viewing complex pictures. J. Exp. Psychol. Hum. Percept. Perform. 22, 563–581 (1996).

    Article  CAS  Google Scholar 

  5. Burr, D.C., Morrone, M.C. & Ross, J. Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371, 511–513 (1994).

    Article  CAS  Google Scholar 

  6. Irwin, D.E. & Brockmole, J.R. Suppressing where but not what: the effect of saccades on dorsal- and ventral-stream visual processing. Psychol. Sci. 15, 467–473 (2004).

    Article  Google Scholar 

  7. Castet, E. & Masson, G.S. Motion perception during saccadic eye movements. Nat. Neurosci. 3, 177–183 (2000).

    Article  CAS  Google Scholar 

  8. Currie, C.B., McConkie, G.W., Carlson-Radvansky, L.A. & Irwin, D.E. The role of the saccade target object in the perception of a visually stable world. Percept. Psychophys. 62, 673–683 (2000).

    Article  CAS  Google Scholar 

  9. O'Regan, J.K. & Noe, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–1011 (2001).

    Article  CAS  Google Scholar 

  10. Nakamura, K. & Colby, C.L. Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc. Natl. Acad. Sci. USA 99, 4026–4031 (2002).

    Article  CAS  Google Scholar 

  11. Duhamel, J.R., Colby, C.L. & Goldberg, M.E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  Google Scholar 

  12. Walker, M.F., Fitzgibbon, E.J. & Goldberg, M.E. Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. J. Neurophysiol. 73, 1988–2003 (1995).

    Article  CAS  Google Scholar 

  13. DeSouza, J.F.X., Dukelow, S.P. & Vilis, T. Eye position signals modulate early dorsal and ventral visual areas. Cereb. Cortex 12, 991–997 (2002).

    Article  Google Scholar 

  14. Sylvester, R., Haynes, J.-D. & Rees, G. Saccades differentially modulate human LGN and V1 responses in the presence and absence of visual stimulation. Curr. Biol. 15, 37–41 (2005).

    Article  CAS  Google Scholar 

  15. Krauzlis, R.J. & Stone, L.S. Tracking with the mind's eye. Trends Neurosci. 22, 544–550 (1999).

    Article  CAS  Google Scholar 

  16. Steinbach, M.J. Pursuing the perceptual rather than the retinal stimulus. Vision Res. 16, 1371–1376 (1976).

    Article  CAS  Google Scholar 

  17. Beutter, B.R. & Stone, L.S. Motion coherence affects human perception and pursuit similarly. Vis. Neurosci. 17, 139–153 (2000).

    Article  CAS  Google Scholar 

  18. Lorenceau, J. & Shiffrar, M. The influence of terminators on motion integration across space. Vision Res. 32, 263–273 (1992).

    Article  CAS  Google Scholar 

  19. Sommer, M.A. & Wurtz, R.H. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol. 91, 1381–1402 (2004).

    Article  Google Scholar 

  20. Sommer, M.A. & Wurtz, R.H. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J. Neurophysiol. 91, 1403–1423 (2004).

    Article  Google Scholar 

  21. Lorenceau, J. & Alais, D. Form constraints in motion binding. Nat. Neurosci. 4, 745–751 (2001).

    Article  CAS  Google Scholar 

  22. Tadin, D., Lappin, J.S., Blake, R. & Grossman, E.D. What constitutes an efficient reference frame for vision? Nat. Neurosci. 5, 1010–1015 (2002).

    Article  CAS  Google Scholar 

  23. McDermott, J., Weiss, Y. & Adelson, E.H. Beyond junctions: nonlocal form constraints on motion interpretation. Perception 30, 905–923 (2001).

    Article  CAS  Google Scholar 

  24. McDermott, J. & Adelson, E.H. The geometry of the occluding contour and its effect on motion interpretation. J. Vis. 4, 944–954 (2004).

    PubMed  Google Scholar 

  25. Wexler, M., Panerai, F., Lamouret, I. & Droulez, J. Self-motion and the perception of stationary objects. Nature 409, 85–88 (2001).

    Article  CAS  Google Scholar 

  26. Hildreth, E.C. & Koch, C. The analysis of visual motion: from computational theory to neuronal mechanisms. Annu. Rev. Neurosci. 10, 477–533 (1987).

    Article  CAS  Google Scholar 

  27. Shimojo, S., Silverman, G.H. & Nakayama, K. Occlusion and the solution to the aperture problem for motion. Vision Res. 29, 619–626 (1989).

    Article  CAS  Google Scholar 

  28. Lorenceau, J., Shiffrar, M., Walls, N. & Castet, E. Different motion sensitive units are involved in recovering the direction of moving lines. Vision Res. 33, 1207–1217 (1993).

    Article  CAS  Google Scholar 

  29. Mingolla, E., Todd, J.T. & Norman, J.F. The perception of globally coherent motion. Vision Res. 32, 1015–1031 (1992).

    Article  CAS  Google Scholar 

  30. Rubin, N. & Hochstein, S. Isolating the effect of one-dimensional motion signals on the perceived direction of moving two-dimensional objects. Vision Res. 33, 1385–1396 (1993).

    Article  CAS  Google Scholar 

  31. Ferrera, V.P. & Wilson, H.R. Perceived direction of moving two-dimensional patterns. Vision Res. 30, 273–287 (1990).

    Article  CAS  Google Scholar 

  32. Lorenceau, J. Veridical perception of global motion from disparate component motions. Vision Res. 38, 1605–1610 (1998).

    Article  CAS  Google Scholar 

  33. Ball, K. & Sekuler, R. Direction-specific improvement in motion discrimination. Vision Res. 27, 953–965 (1987).

    Article  CAS  Google Scholar 

  34. Krukowski, A.E. & Stone, L.S. Expansion of direction space around the cardinal axes revealed by smooth pursuit eye movements. Neuron 45, 315–323 (2005).

    Article  CAS  Google Scholar 

  35. Heeley, D.W. & Buchanan-Smith, H.M. Directional acuity for drifting plaids. Vision Res. 32, 97–104 (1992).

    Article  CAS  Google Scholar 

  36. Gros, B.L., Blake, R. & Hiris, E. Anisotropies in visual motion perception: a fresh look. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 15, 2003–2011 (1998).

    Article  CAS  Google Scholar 

  37. Burr, D. Eye movements: keeping vision stable. Curr. Biol. 14, R195–R197 (2004).

    Article  CAS  Google Scholar 

  38. Thier, P., Haarmeier, T., Chakraborty, S., Lindner, A. & Tikhonov, A. Cortical substrates of perceptual stability during eye movements. Neuroimage 14, S33–S39 (2001).

    Article  CAS  Google Scholar 

  39. Khayat, P.S., Spekreijse, H. & Roelfsema, P.R. Correlates of transsaccadic integration in the primary visual cortex of the monkey. Proc. Natl. Acad. Sci. USA 101, 12712–12717 (2004).

    Article  CAS  Google Scholar 

  40. Bedell, H.E., Chung, S.T.L. & Patel, S.S. Attenuation of perceived motion smear during vergence and pursuit tracking. Vision Res. 44, 895–902 (2004).

    Article  Google Scholar 

  41. Souman, J.L., Hooge, I.T. & Wertheim, A.H. Perceived motion direction during smooth pursuit eye movements. Exp. Brain Res. 164, 376–386 (2005).

    Article  Google Scholar 

  42. Souman, J.L., Hooge, I.T. & Wertheim, A.H. Vertical object motion during horizontal ocular pursuit: compensation for eye movements increases with presentation duration. Vision Res. 45, 845–853 (2005).

    Article  Google Scholar 

  43. Li, H.-C.O., Brenner, E., Cornelissen, F.W. & Kim, E.-S. Systematic distortion of perceived 2D shape during smooth pursuit eye movements. Vision Res. 42, 2569–2575 (2002).

    Article  Google Scholar 

  44. Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  45. Pelli, D.G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Article  CAS  Google Scholar 

  46. Barlow, H.B. Eye movements during fixation. J. Physiol. (Lond.) 116, 290–306 (1952).

    Article  CAS  Google Scholar 

  47. Wichmann, F.A. & Hill, N.J. The psychometric function: I. Fitting, sampling, and goodness of fit. Percept. Psychophys. 63, 1293–1313 (2001).

    Article  CAS  Google Scholar 

  48. Wichmann, F.A. & Hill, N.J. The psychometric function: II. Bootstrap-based confidence intervals and sampling. Percept. Psychophys. 63, 1314–1329 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Natural Sciences and Engineering Research Council of Canada, the Sloan-Swartz Center for Theoretical Neurobiology and the US National Institutes of Health (grant EY12212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziad M Hafed or Richard J Krauzlis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Exploring differential effects of eye movement direction relative to retinal motion direction. (PDF 221 kb)

Supplementary Fig. 2

Subjective experience of coherence was highest for orthogonal tracking. (PDF 140 kb)

Supplementary Fig. 3

Exploring differential effects of eye movement direction relative to retinal motion direction with a different shape. (PDF 181 kb)

Supplementary Fig. 4

Subjective experience of coherence was highest for horizontal tracking with the diamond stimulus of Supplementary Figure 3. (PDF 106 kb)

Supplementary Note (PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafed, Z., Krauzlis, R. Ongoing eye movements constrain visual perception. Nat Neurosci 9, 1449–1457 (2006). https://doi.org/10.1038/nn1782

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing