Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local potassium signaling couples neuronal activity to vasodilation in the brain

Abstract

The mechanisms by which active neurons, via astrocytes, rapidly signal intracerebral arterioles to dilate remain obscure. Here we show that modest elevation of extracellular potassium (K+) activated inward rectifier K+ (Kir) channels and caused membrane potential hyperpolarization in smooth muscle cells (SMCs) of intracerebral arterioles and, in cortical brain slices, induced Kir-dependent vasodilation and suppression of SMC intracellular calcium (Ca2+) oscillations. Neuronal activation induced a rapid (<2 s latency) vasodilation that was greatly reduced by Kir channel blockade and completely abrogated by concurrent cyclooxygenase inhibition. Astrocytic endfeet exhibited large-conductance, Ca2+-sensitive K+ (BK) channel currents that could be activated by neuronal stimulation. Blocking BK channels or ablating the gene encoding these channels prevented neuronally induced vasodilation and suppression of arteriolar SMC Ca2+, without affecting the astrocytic Ca2+ elevation. These results support the concept of intercellular K+ channel–to–K+ channel signaling, through which neuronal activity in the form of an astrocytic Ca2+ signal is decoded by astrocytic BK channels, which locally release K+ into the perivascular space to activate SMC Kir channels and cause vasodilation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kir channel currents in SMCs isolated from parenchymal arterioles.
Figure 2: Elevation of [K+]o to 10 mM dilates parenchymal arterioles and suppresses Ca2+ oscillations in arteriolar SMCs in brain slices.
Figure 3: Neuronal activity–induced dilation of arterioles is largely inhibited by blockers of Kir or BK channels in brain slices.
Figure 4: BK channel currents in astrocytic endfeet in brain slices.
Figure 5: Blockade of BK channels inhibits electrical stimulation–induced suppression of arteriolar smooth muscle Ca2+ oscillations in brain slices.
Figure 6: The absence of functional BK channels prevents electrical stimulation–induced suppression of Ca2+ oscillations in SMCs of parenchymal arterioles in brain slices.

Similar content being viewed by others

References

  1. Roy, C.S. & Sherrington, C. On the regulation of the blood supply of the brain. J. Physiol. (Lond.) 11, 85–108 (1890).

    Article  CAS  Google Scholar 

  2. Filosa, J.A., Bonev, A.D. & Nelson, M.T. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ. Res. 95, e73–e81 (2004).

    Article  CAS  Google Scholar 

  3. Chaigneau, E., Oheim, M., Audinat, E. & Charpak, S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc. Natl. Acad. Sci. USA 100, 13081–13086 (2003).

    Article  CAS  Google Scholar 

  4. Metea, M.R. & Newman, E.A. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci. 26, 2862–2870 (2006).

    Article  CAS  Google Scholar 

  5. Mulligan, S.J. & MacVicar, B.A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004).

    Article  CAS  Google Scholar 

  6. Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2006).

    Article  CAS  Google Scholar 

  7. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003).

    Article  CAS  Google Scholar 

  8. Rossi, D.J. Another BOLD role for astrocytes: coupling blood flow to neural activity. Nat. Neurosci. 9, 159–161 (2006).

    Article  CAS  Google Scholar 

  9. Price, D.L., Ludwig, J.W., Mi, H., Schwarz, T.L. & Ellisman, M.H. Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet. Brain Res. 956, 183–193 (2002).

    Article  CAS  Google Scholar 

  10. Knot, H.J., Zimmermann, P.A. & Nelson, M.T. Extracellular K(+)-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels. J. Physiol. (Lond.) 492, 419–430 (1996).

    Article  CAS  Google Scholar 

  11. Horiuchi, T., Dietrich, H.H., Hongo, K. & Dacey, R.G., Jr. Mechanism of extracellular K+-induced local and conducted responses in cerebral penetrating arterioles. Stroke 33, 2692–2699 (2002).

    Article  CAS  Google Scholar 

  12. McCarron, J.G. & Halpern, W. Potassium dilates rat cerebral arteries by two independent mechanisms. Am. J. Physiol. 259, H902–H908 (1990).

    CAS  PubMed  Google Scholar 

  13. Kuschinsky, W., Wahl, M., Bosse, O. & Thurau, K. Perivascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study. Circ. Res. 31, 240–247 (1972).

    Article  CAS  Google Scholar 

  14. Zaritsky, J.J., Eckman, D.M., Wellman, G.C., Nelson, M.T. & Schwarz, T.L. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circ. Res. 87, 160–166 (2000).

    Article  CAS  Google Scholar 

  15. Bradley, K.K. et al. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. J. Physiol. (Lond.) 515, 639–651 (1999).

    Article  CAS  Google Scholar 

  16. Knot, H.J. & Nelson, M.T. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J. Physiol. (Lond.) 508, 199–209 (1998).

    Article  CAS  Google Scholar 

  17. Quayle, J.M., McCarron, J.G., Brayden, J.E. & Nelson, M.T. Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries. Am. J. Physiol. 265, C1363–C1370 (1993).

    Article  CAS  Google Scholar 

  18. Quayle, J.M., Nelson, M.T. & Standen, N.B. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev. 77, 1165–1232 (1997).

    Article  CAS  Google Scholar 

  19. Nelson, M.T., Patlak, J.B., Worley, J.F. & Standen, N.B. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am. J. Physiol. 259, C3–18 (1990).

    Article  CAS  Google Scholar 

  20. Nelson, M.T. & Quayle, J.M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268, C799–C822 (1995).

    Article  CAS  Google Scholar 

  21. Mayhew, J.E. et al. Cerebral vasomotion: a 0.1-Hz oscillation in reflected light imaging of neural activity. Neuroimage 4, 183–193 (1996).

    Article  CAS  Google Scholar 

  22. Nilsson, H. & Aalkjaer, C. Vasomotion: mechanisms and physiological importance. Mol. Interv. 3, 79–89 (2003).

    Article  CAS  Google Scholar 

  23. Brown, L.A., Key, B.J. & Lovick, T.A. Inhibition of vasomotion in hippocampal cerebral arterioles during increases in neuronal activity. Auton. Neurosci. 95, 137–140 (2002).

    Article  CAS  Google Scholar 

  24. Langton, P.D., Nelson, M.T., Huang, Y. & Standen, N.B. Block of calcium-activated potassium channels in mammalian arterial myocytes by tetraethylammonium ions. Am. J. Physiol. 260, H927–H934 (1991).

    CAS  PubMed  Google Scholar 

  25. Silva, A.C., Lee, S.P., Iadecola, C. & Kim, S.G. Early temporal characteristics of cerebral blood flow and deoxyhemoglobin changes during somatosensory stimulation. J. Cereb. Blood Flow Metab. 20, 201–206 (2000).

    Article  CAS  Google Scholar 

  26. Silva, A.C., Lee, S.P., Yang, G., Iadecola, C. & Kim, S.G. Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat. J. Cereb. Blood Flow Metab. 19, 871–879 (1999).

    Article  CAS  Google Scholar 

  27. Nagelhus, E.A. et al. Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26, 47–54 (1999).

    Article  CAS  Google Scholar 

  28. Simard, M. & Nedergaard, M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129, 877–896 (2004).

    Article  CAS  Google Scholar 

  29. Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816–823 (2006).

    Article  CAS  Google Scholar 

  30. Simard, M., Arcuino, G., Takano, T., Liu, Q.S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci. 23, 9254–9262 (2003).

    Article  CAS  Google Scholar 

  31. Kuffler, S.W., Nicholls, J.G. & Orkand, R.K. Physiological properties of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 768–787 (1966).

    Article  CAS  Google Scholar 

  32. Gebremedhin, D. et al. Metabotropic glutamate receptor activation enhances the activities of two types of Ca2+-activated K+ channels in rat hippocampal astrocytes. J. Neurosci. 23, 1678–1687 (2003).

    Article  CAS  Google Scholar 

  33. Meredith, A.L., Thorneloe, K.S., Werner, M.E., Nelson, M.T. & Aldrich, R.W. Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J. Biol. Chem. 279, 36746–36752 (2004).

    Article  CAS  Google Scholar 

  34. Newman, E.A. Regional specialization of retinal glial cell membrane. Nature 309, 155–157 (1984).

    Article  CAS  Google Scholar 

  35. Newman, E.A. High potassium conductance in astrocyte endfeet. Science 233, 453–454 (1986).

    Article  CAS  Google Scholar 

  36. Horiuchi, T., Dietrich, H.H., Tsugane, S. & Dacey, R.G., Jr. Role of potassium channels in regulation of brain arteriolar tone: comparison of cerebrum versus brain stem. Stroke 32, 218–224 (2001).

    Article  CAS  Google Scholar 

  37. Nelson, M.T. et al. Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633–637 (1995).

    Article  CAS  Google Scholar 

  38. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  Google Scholar 

  39. Park, L. et al. Abeta-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex. J. Cereb. Blood Flow Metab. 24, 334–342 (2004).

    Article  CAS  Google Scholar 

  40. Cheney, J.A. et al. The maxi-K channel opener BMS-204352 attenuates regional cerebral edema and neurologic motor impairment after experimental brain injury. J. Cereb. Blood Flow Metab. 21, 396–403 (2001).

    Article  CAS  Google Scholar 

  41. Heurteaux, C., Bertaina, V., Widmann, C. & Lazdunski, M. K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus. Proc. Natl. Acad. Sci. USA 90, 9431–9435 (1993).

    Article  CAS  Google Scholar 

  42. Jensen, B.S. BMS-204352: a potassium channel opener developed for the treatment of stroke. CNS Drug Rev. 8, 353–360 (2002).

    Article  CAS  Google Scholar 

  43. Gribkoff, V.K. et al. Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat. Med. 7, 471–477 (2001).

    Article  CAS  Google Scholar 

  44. Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Hill-Eubanks for comments on the manuscript and J. Brayden for help with the microelectrode recordings. This work was supported by the US National Institutes of Health (grants HL44455 and HL63722 to M.T.N. from the National Heart, Lung and Blood Institute), a postdoctoral fellowship from the American Heart Association (0425923T to J.A.F.), a National Institutes of Health training grant (HL07944 to M.K.W.), the Howard Hughes Medical Institute and the Totman Trust for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T Nelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Local K+ channel to K+ channel signaling between cells of the neurovascular unit mediates rapid neurovascular coupling. (PDF 39 kb)

Supplementary Video 1

Elevation of [K+]o to 10 mM dilates parenchymal arterioles in a cortical brain slice. (MOV 2619 kb)

Supplementary Video 2

ES-induced dilation of an arteriole in a brain slice. (MOV 2609 kb)

Supplementary Video 3

ES-induced dilation of an arteriole in a brain slice is prevented by inhibition of Kir channels. (MOV 2609 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filosa, J., Bonev, A., Straub, S. et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9, 1397–1403 (2006). https://doi.org/10.1038/nn1779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing