Article | Published:

Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron

Nature Neurosciencevolume 9pages13121320 (2006) | Download Citation



Neurons in many species have large receptive fields that are selective for specific optic flow fields. Here, we studied the neural mechanisms underlying flow field selectivity in lobula plate tangential cells (LPTCs) of the blowfly. Among these cells, the H2 cell responds preferentially to visual stimuli approximating rotational optic flow. Through double recordings from H2 and many other LPTCs, we characterized a bidirectional commissural pathway that allows visual information to be shared between the hemispheres. This pathway is mediated by axo-axonal electrical coupling of H2 and the horizontal system equatorial (HSE) cell located in the opposite hemisphere. Using single-cell ablations, we found that this pathway is sufficient to allow H2 to amplify and attenuate dendritic input during binocular visual stimuli. This is accomplished through a modulation of H2's membrane potential by input from the contralateral HSE cell, which scales the firing rate of H2 during visual stimulation but is not sufficient to induce action potentials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Borst, A. & Bahde, S. Spatio-temporal integration of motion: a simple strategy for safe landing in flies. Naturwissenschaften 75, 265–267 (1988).

  2. 2

    Davies, M.N.O. & Green, P.R. Optic flow-field variables trigger landing in hawk but not in pigeons. Naturwissenschaften 77, 142–144 (1990).

  3. 3

    Mizutani, A., Chahl, J.S. & Srinivasan, M.V. Insect behaviour: motion camouflage in dragonflies. Nature 423, 604 (2003).

  4. 4

    Srinivasan, M.V. & Zhang, S. Visual motor computations in insects. Annu. Rev. Neurosci. 27, 679–696 (2004).

  5. 5

    Lagae, L., Maes, H., Raiguel, S., Xiao, D.K. & Orban, G.A. Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J. Neurophysiol. 71, 1597–1626 (1994).

  6. 6

    Tanaka, K. & Saito, H. Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62, 626–641 (1989).

  7. 7

    Soodak, R.E. & Simpson, J.I. The accessory optic system of rabbit. I. Basic visual response properties. J. Neurophysiol. 60, 2037–2054 (1988).

  8. 8

    Simpson, J.I., Leonard, C.S. & Soodak, R.E. The accessory optic system of rabbit. II. Spatial organization of direction selectivity. J. Neurophysiol. 60, 2055–2072 (1988).

  9. 9

    Wylie, D.R. & Frost, B.J. Binocular neurons in the nucleus of the basal optic root (nBOR) of the pigeon are selective for either translational or rotational visual flow. Vis. Neurosci. 5, 489–495 (1990).

  10. 10

    Wylie, D.R., Kripalani, T. & Frost, B.J. Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. I. Functional organization of neurons discriminating between translational and rotational visual flow. J. Neurophysiol. 70, 2632–2646 (1993).

  11. 11

    Schlotterer, G.R. Response of the locust descending movement detector neuron to rapidly approaching and withdrawing visual stimuli. Can. J. Zool. 55, 1372–1376 (1977).

  12. 12

    Gabbiani, F., Krapp, H.G. & Laurent, G. Computation of object approach by wide-field, motion-sensitive neuron. J. Neurosci. 19, 1122–1141 (1999).

  13. 13

    Hausen, K. The lobula-complex of the fly: structure, function and significance in visual behaviour. in Photoreception and Vision in Invertebrates (ed. Ali, M.A.) 523–559 (Plenum Press, New York, 1984).

  14. 14

    Krapp, H.G. & Hengstenberg, R. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384, 463–466 (1996).

  15. 15

    Krapp, H.G., Hengstenberg, R. & Egelhaaf, M. Binocular contributions to optic flow processing in the fly visual system. J. Neurophysiol. 85, 724–734 (2001).

  16. 16

    Haag, J. & Borst, A. Recurrent network interactions underlying flow-field selectivity of visual interneurons. J. Neurosci. 21, 5685–5692 (2001).

  17. 17

    Haag, J. & Borst, A. Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 189, 363–370 (2003).

  18. 18

    Kern, R., van Hateren, J.H., Michaelis, C., Lindemann, J.P. & Egelhaaf, M. Function of a fly motion-sensitive neuron matches eye movements during free flight. PLoS Biol. 3, e171 (2005).

  19. 19

    van Hateren, J.H., Kern, R., Schwerdtfeger, G. & Egelhaaf, M. Function and coding in the blowfly H1 neuron during naturalistic optic flow. J. Neurosci. 25, 4343–4352 (2005).

  20. 20

    Single, S. & Borst, A. Dendritic integration and its role in computing image velocity. Science 281, 1848–1850 (1998).

  21. 21

    Haag, J., Denk, W. & Borst, A. Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. Proc. Natl. Acad. Sci. USA 101, 16333–16338 (2004).

  22. 22

    Warzecha, A.K., Egelhaaf, M. & Borst, A. Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. J. Neurophysiol. 69, 329–339 (1993).

  23. 23

    Egelhaaf, M., Borst, A., Warzecha, A.K., Flecks, S. & Wildemann, A. Neural circuit tuning fly visual neurons to motion of small objects II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques. J. Neurophysiol. 69, 340–351 (1993).

  24. 24

    Horstmann, W., Egelhaaf, M. & Warzecha, A.K. Synaptic interaction increase optic flow specificity. Eur. J. Neurosci. 12, 2157–2165 (2000).

  25. 25

    Haag, J. & Borst, A. Dendro-dendritic interactions between motion-sensitive large-field neurons in the fly. J. Neurosci. 22, 3227–3233 (2002).

  26. 26

    Farrow, K., Haag, J. & Borst, A. Input organization of multifunctional motion-sensitive neurons in the blowfly. J. Neurosci. 23, 9805–9811 (2003).

  27. 27

    Haag, J. & Borst, A. Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons. Nat. Neurosci. 7, 628–634 (2004).

  28. 28

    Farrow, K. Lateral interactions and receptive field structure of lobula plate tangential cells in the blowfly. Thesis, Ludwig-Maximilians-Universität, (2005).

  29. 29

    Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol. Cybern. 45, 143–156 (1982).

  30. 30

    Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol. Cybern. 46, 67–79 (1982).

  31. 31

    Eckert, H. & Dvorak, D.R. The centrifugal horizontal cells in the lobula plate of the blowfly Phaenicia sericata. J. Insect Physiol. 29, 547–560 (1983).

  32. 32

    Hausen, K. Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges. 74, 49–70 (1981).

  33. 33

    Haag, J., Vermeulen, A. & Borst, A. The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: III. Visual response properties. J. Comput. Neurosci. 7, 213–234 (1999).

  34. 34

    Meyer, E.P., Matute, C., Streit, P. & Nassel, D.R. Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84, 207–216 (1986).

  35. 35

    Gauck, V., Egelhaaf, M. & Borst, A. Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system. J. Comp. Neurol. 381, 489–499 (1997).

  36. 36

    Haag, J. & Borst, A. Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 191, 445–454 (2005).

  37. 37

    Borst, A. & Haag, J. The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. J. Comput. Neurosci. 3, 313–336 (1996).

  38. 38

    Haag, J., Theunissen, F. & Borst, A. The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties. J. Comput. Neurosci. 4, 349–369 (1997).

  39. 39

    Strausfeld, N.J. & Bassemir, U.K. The organization of giant horizontal-motion-sensitive neurons and their synaptic relationships in the lateral deutocerebrum of Calliphora erythrocephala and Musca domestica. Cell Tissue Res. 242, 531–550 (1985).

  40. 40

    Cuntz, H., Haag, J. & Borst, A. Neural image processing by dendritic networks. Proc. Natl. Acad. Sci. USA 100, 11082–11085 (2003).

  41. 41

    Hausen, K., Wolburg-Buchholz, K. & Ribi, W.A. The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res. 208, 371–387 (1980).

  42. 42

    Nadim, F. & Golowasch, J. Signal transmission between gap-junctionally coupled passive cables is most effective at an optimal diameter. J. Neurophysiol. 95, 3831–3843 (2006).

  43. 43

    Land, M.F. Head movement of flies during visually guided flight. Nature 243, 299–300 (1973).

  44. 44

    Hateren, J.H. & Schilstra, C. Blowfly flight and optic flow. II. Head movements during flight. J. Exp. Biol. 202, 1491–1500 (1999).

  45. 45

    Schilstra, C. & Hateren, J.H. Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J. Exp. Biol. 202, 1481–1490 (1999).

  46. 46

    Karmeier, K., van Hateren, J.H., Kern, R. & Egelhaaf, M. Encoding of naturalistic optic flow by a population of blowfly motion sensitive neurons. J. Neurophysiol. 96, 1602–1614 (2006).

  47. 47

    Farrow, K., Borst, A. & Haag, J. Sharing receptive fields with your neighbors: tuning the vertical system cells to wide field motion. J. Neurosci. 25, 3985–3993 (2005).

  48. 48

    Miller, J.P. & Selverston, A. Rapid killing of single neurons by irradiation of intracellularly injected dye. Science 206, 702–704 (1979).

  49. 49

    Hines, M.L. & Carnevale, N.T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

  50. 50

    Hines, M.L. & Carnevale, N.T. Expanding NEURON's repertoire of mechanisms with NMODL. Neural Comput. 12, 995–1007 (2000).

Download references


We would like to thank R.H. Masland for carefully reading an earlier version of this manuscript.

Author information

Author notes

    • Karl Farrow

    Present address: Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Thier 429, Boston, Massachusetts, 02114, USA

  1. Karl Farrow and Juergen Haag: These authors contributed equally to this work.


  1. Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, Martinsried, 82152, Germany

    • Karl Farrow
    • , Juergen Haag
    •  & Alexander Borst


  1. Search for Karl Farrow in:

  2. Search for Juergen Haag in:

  3. Search for Alexander Borst in:


K.F. and J.H. performed the experiments and analyzed the data. K.F. carried out the computer simulations. K.F., J.H. and A.B. jointly planned the experiments, discussed the results and wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Karl Farrow.

About this article

Publication history




Issue Date