Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output

An Erratum to this article was published on 01 September 2006

This article has been updated

Abstract

Spontaneous action potentials in the suprachiasmatic nucleus (SCN) are necessary for normal circadian timing of behavior in mammals. The SCN exhibits a daily oscillation in spontaneous firing rate (SFR), but the ionic conductances controlling SFR and the relationship of SFR to subsequent circadian behavioral rhythms are not understood. We show that daily expression of the large conductance Ca2+-activated K+ channel (BK) in the SCN is controlled by the intrinsic circadian clock. BK channel–null mice (Kcnma1−/−) have increased SFRs in SCN neurons selectively at night and weak circadian amplitudes in multiple behaviors timed by the SCN. Kcnma1−/− mice show normal expression of clock genes such as Arntl (Bmal1), indicating a role for BK channels in SCN pacemaker output, rather than in intrinsic time-keeping. Our findings implicate BK channels as important regulators of the SFR and suggest that the SCN pacemaker governs the expression of circadian behavioral rhythms through SFR modulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BK channel expression in the SCN.
Figure 2: Records of locomotor wheel-running activity.
Figure 3: Home-cage activity records.
Figure 4: Responses of Kcnma1−/− mice to light.
Figure 5: Core body temperature (Tcore) measurements.
Figure 6: SCN neuronal spontaneous firing rates (SFR).
Figure 7: Gene expression in the SCNs of Kcnma1−/− and wild-type mice.

Similar content being viewed by others

Change history

  • 03 August 2006

    In the version of this article initially published, there was an error in the figure label of Figure 6d. The correct version of the figure is below. The error has been corrected in the HTML and PDF versions of the article.

Notes

  1. *NOTE: In the version of this article initially published, there was an error in the figure label of Figure 6d. The correct version of the figure appears above. The error has been corrected in the HTML and PDF versions of the article.

References

  1. King, D.P. & Takahashi, J.S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 23, 713–742 (2000).

    Article  CAS  Google Scholar 

  2. Reppert, S.M. & Weaver, D.R. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002).

    Article  CAS  Google Scholar 

  3. Hastings, M.H. & Herzog, E.D. Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J. Biol. Rhythms 19, 400–413 (2004).

    Article  CAS  Google Scholar 

  4. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article  CAS  Google Scholar 

  5. Ueda, H.R. et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37, 187–192 (2005).

    Article  CAS  Google Scholar 

  6. Stephan, F.K. & Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 69, 1583–1586 (1972).

    Article  CAS  Google Scholar 

  7. Moore, R.Y. & Eichler, V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201–206 (1972).

    Article  CAS  Google Scholar 

  8. Ralph, M.R., Foster, R.G., Davis, F.C. & Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975–978 (1990).

    Article  CAS  Google Scholar 

  9. Rusak, B. & Zucker, I. Neural regulation of circadian rhythms. Physiol. Rev. 59, 449–526 (1979).

    Article  CAS  Google Scholar 

  10. Yamazaki, S., Kerbeshian, M.C., Hocker, C.G., Block, G.D. & Menaker, M. Rhythmic properties of the hamster suprachiasmatic nucleus in vivo. J. Neurosci. 18, 10709–10723 (1998).

    Article  CAS  Google Scholar 

  11. Green, D.J. & Gillette, R. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res. 245, 198–200 (1982).

    Article  CAS  Google Scholar 

  12. Groos, G. & Hendriks, J. Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci. Lett. 34, 283–288 (1982).

    Article  CAS  Google Scholar 

  13. Shibata, S., Oomura, Y., Kita, H. & Hattori, K. Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res. 247, 154–158 (1982).

    Article  CAS  Google Scholar 

  14. Inouye, S.T. & Kawamura, H. Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA 76, 5962–5966 (1979).

    Article  CAS  Google Scholar 

  15. Ikeda, M. et al. Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons. Neuron 38, 253–263 (2003).

    Article  CAS  Google Scholar 

  16. Earnest, D.J. & Sladek, C.D. Circadian rhythms of vasopressin release from individual rat suprachiasmatic explants in vitro. Brain Res. 382, 129–133 (1986).

    Article  CAS  Google Scholar 

  17. Shinohara, K., Honma, S., Katsuno, Y., Abe, H. & Honma, K. Circadian release of amino acids in the suprachiasmatic nucleus in vitro. Neuroreport 9, 137–140 (1998).

    Article  CAS  Google Scholar 

  18. Schwartz, W.J., Gross, R.A. & Morton, M.T. The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc. Natl. Acad. Sci. USA 84, 1694–1698 (1987).

    Article  CAS  Google Scholar 

  19. Earnest, D.J., Digiorgio, S.M. & Sladek, C.D. Effects of tetrodotoxin on the circadian pacemaker mechanism in suprachiasmatic explants in vitro. Brain Res. Bull. 26, 677–682 (1991).

    Article  CAS  Google Scholar 

  20. Welsh, D.K., Logothetis, D.E., Meister, M. & Reppert, S.M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706 (1995).

    Article  CAS  Google Scholar 

  21. Aton, S.J. & Herzog, E.D. Come together, right...now: synchronization of rhythms in a mammalian circadian clock. Neuron 48, 531–534 (2005).

    Article  CAS  Google Scholar 

  22. Lundkvist, G.B. & Block, G.D. Role of neuronal membrane events in circadian rhythm generation. Methods Enzymol. 393, 623–642 (2005).

    Article  CAS  Google Scholar 

  23. Itri, J.N., Michel, S., Vansteensel, M.J., Meijer, J.H. & Colwell, C.S. Fast delayed rectifier potassium current is required for circadian neural activity. Nat. Neurosci. 8, 650–656 (2005).

    Article  CAS  Google Scholar 

  24. Kuhlman, S.J. & McMahon, D.G. Rhythmic regulation of membrane potential and potassium current persists in SCN neurons in the absence of environmental input. Eur. J. Neurosci. 20, 1113–1117 (2004).

    Article  Google Scholar 

  25. de Jeu, M., Hermes, M. & Pennartz, C. Circadian modulation of membrane properties in slices of rat suprachiasmatic nucleus. Neuroreport 9, 3725–3729 (1998).

    Article  CAS  Google Scholar 

  26. Zheng, B. et al. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169–173 (1999).

    Article  CAS  Google Scholar 

  27. Antle, M.C., LeSauter, J. & Silver, R. Neurogenesis and ontogeny of specific cell phenotypes within the hamster suprachiasmatic nucleus. Brain Res. Dev. Brain Res. 157, 8–18 (2005).

    Article  CAS  Google Scholar 

  28. Pennartz, C.M., De Jeu, M.T., Geurtsen, A.M., Sluiter, A.A. & Hermes, M.L. Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus. J. Physiol. (Lond.) 506, 775–793 (1998).

    Article  CAS  Google Scholar 

  29. van den Pol, A.N. & Tsujimoto, K.L. Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience 15, 1049–1086 (1985).

    Article  CAS  Google Scholar 

  30. Meredith, A.L., Thorneloe, K.S., Werner, M.E., Nelson, M.T. & Aldrich, R.W. Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J. Biol. Chem. 279, 36746–36752 (2004).

    Article  CAS  Google Scholar 

  31. Pittendrigh, C.S. & Daan, S. A Functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 106, 223–252 (1976).

    Article  Google Scholar 

  32. Sokolove, P.G. & Bushell, W.N. The chi square periodogram: its utility for analysis of circadian rhythms. J. Theor. Biol. 72, 131–160 (1978).

    Article  CAS  Google Scholar 

  33. Sausbier, M. et al. Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc. Natl. Acad. Sci. USA 101, 9474–9478 (2004).

    Article  CAS  Google Scholar 

  34. Honma, S. et al. Circadian oscillation of BMAL1, a partner of a mammalian clock gene Clock, in rat suprachiasmatic nucleus. Biochem. Biophys. Res. Commun. 250, 83–87 (1998).

    Article  CAS  Google Scholar 

  35. Low-Zeddies, S.S. & Takahashi, J.S. Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior. Cell 105, 25–42 (2001).

    Article  CAS  Google Scholar 

  36. Ceriani, M.F. et al. Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J. Neurosci. 22, 9305–9319 (2002).

    Article  CAS  Google Scholar 

  37. Herzog, E.D., Takahashi, J.S. & Block, G.D. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat. Neurosci. 1, 708–713 (1998).

    Article  CAS  Google Scholar 

  38. Nakamura, W., Honma, S., Shirakawa, T. & Honma, K. Clock mutation lengthens the circadian period without damping rhythms in individual SCN neurons. Nat. Neurosci. 5, 399–400 (2002).

    Article  CAS  Google Scholar 

  39. Albus, H. et al. Cryptochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei. Curr. Biol. 12, 1130–1133 (2002).

    Article  CAS  Google Scholar 

  40. Yamaguchi, S. et al. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302, 1408–1412 (2003).

    Article  CAS  Google Scholar 

  41. Kuhlman, S.J., Silver, R., Le Sauter, J., Bult-Ito, A. & McMahon, D.G. Phase resetting light pulses induce Per1 and persistent spike activity in a subpopulation of biological clock neurons. J. Neurosci. 23, 1441–1450 (2003).

    Article  CAS  Google Scholar 

  42. Nitabach, M.N., Blau, J. & Holmes, T.C. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109, 485–495 (2002).

    Article  CAS  Google Scholar 

  43. Harmar, A.J. et al. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109, 497–508 (2002).

    Article  CAS  Google Scholar 

  44. Cutler, D.J. et al. The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro. Eur. J. Neurosci. 17, 197–204 (2003).

    Article  Google Scholar 

  45. Nitabach, M.N., Sheeba, V., Vera, D.A., Blau, J. & Holmes, T.C. Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock. J. Neurobiol. 62, 1–13 (2005).

    Article  CAS  Google Scholar 

  46. Pitts, G.R., Ohta, H. & McMahon, D.G. Daily rhythmicity of large-conductance Ca(2+)-activated K(+) currents in suprachiasmatic nucleus neurons. Brain Res. 1071, 54–62 (2006).

    Article  CAS  Google Scholar 

  47. Cloues, R.K. & Sather, W.A. Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J. Neurosci. 23, 1593–1604 (2003).

    Article  CAS  Google Scholar 

  48. Misonou, H. et al. Immunolocalization of the Ca2+-activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J. Comp. Neurol. 496, 289–302 (2006).

    Article  CAS  Google Scholar 

  49. Rattray, M. & Michael, G.J. Oligonucleotide probes for in situ hybridization. in In Situ Hybridization: A Practical Approach 2nd edn. (ed. Wilkinson, D.G.) 23–67 (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  50. Siepka, S.M. & Takahashi, J.S. Methods to record circadian rhythm wheel running activity in mice. Methods Enzymol. 393, 230–239 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Barakat for assistance with circadian behavioral experiments, L. Baxter for assistance with animal care, and V. Cao for SCN slice preparation advice. We also thank D. Welsh for helpful comments on the manuscript. The work was supported by the Howard Hughes Medical Institute (R.W.A. & J.S.T.), the Mathers Foundation (R.W.A.) and the US National Institutes of Health (NIH MH-60385 to N.F.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea L Meredith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Pearson r-squared values for the microarrays. Each probeset on each array was summarized by the median of the Perfect Match (PM) values. Reported is the Pearson correlation between the median values for each WT: Slo−/− pair of arrays in the data set. (PDF 40 kb)

Supplementary Methods (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meredith, A., Wiler, S., Miller, B. et al. BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat Neurosci 9, 1041–1049 (2006). https://doi.org/10.1038/nn1740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing