Abstract
Pavlovian fear conditioning, a simple form of associative learning, is thought to involve the induction of associative, NMDA receptor–dependent long-term potentiation (LTP) in the lateral amygdala. Using a combined genetic and electrophysiological approach, we show here that lack of a specific GABAB receptor subtype, GABAB(1a,2), unmasks a nonassociative, NMDA receptor–independent form of presynaptic LTP at cortico-amygdala afferents. Moreover, the level of presynaptic GABAB(1a,2) receptor activation, and hence the balance between associative and nonassociative forms of LTP, can be dynamically modulated by local inhibitory activity. At the behavioral level, genetic loss of GABAB(1a) results in a generalization of conditioned fear to nonconditioned stimuli. Our findings indicate that presynaptic inhibition through GABAB(1a,2) receptors serves as an activity-dependent constraint on the induction of homosynaptic plasticity, which may be important to prevent the generalization of conditioned fear.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).
Maren, S. & Quirk, G.J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).
Rumpel, S., LeDoux, J.E., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005).
Weisskopf, M.G., Bauer, E.P. & LeDoux, J.E. L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J. Neurosci. 19, 10512–10519 (1999).
Bissière, S., Humeau, Y. & Lüthi, A. Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat. Neurosci. 6, 587–592 (2003).
Humeau, Y. et al. Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron 45, 119–131 (2005).
McKernan, M.G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997).
Humeau, Y., Shaban, H., Bissière, S. & Lüthi, A. Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426, 841–845 (2003).
Sugita, S., Tanaka, E. & North, R.A. Membrane properties and synaptic potentials of three types of neurones in rat lateral amygdala. J. Physiol. (Lond.) 460, 705–718 (1993).
Li, X.F., Armony, J.L. & LeDoux, J.E. GABAA and GABAB receptors differentially regulate synaptic transmission in the auditory thalamo-amygdala pathway: an in vivo microiontophoretic study and a model. Synapse 24, 115–124 (1996).
Lang, E.J. & Paré, D. Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo. J. Neurophysiol. 77, 353–363 (1997).
Kullmann, D.M. et al. Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog. Biophys. Mol. Biol. 87, 33–46 (2005).
Thompson, S.M., Capogna, M. & Scanziani, M. Presynaptic inhibition in the hippocampus. Trends Neurosci. 16, 222–227 (1993).
Cryan, J.F. & Kaupmann, K. Don't worry 'B' happy!: a role for GABA(B) receptors in anxiety and depression. Trends Pharmacol. Sci. 26, 36–43 (2005).
Isaacson, J.S., Solis, J.M. & Nicoll, R.A. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10, 165–175 (1993).
Dittman, J.S. & Regehr, W.G. Mechanism and kinetics of heterosynaptic depression at a cerebellar synapse. J. Neurosci. 17, 9048–9059 (1997).
Porter, J.T. & Nieves, D. Presynaptic GABAB receptors modulate thalamic excitation of inhibitory and excitatory neurons in the mouse barrel cortex. J. Neurophysiol. 92, 2762–2770 (2004).
Asprodini, E.K., Rainnie, D.G. & Shinnick-Gallagher, P. Epileptogenesis reduces the sensitivity of presynaptic gamma-aminobutyric acidB receptors on glutamatergic afferents in the amygdala. J. Pharmacol. Exp. Ther. 262, 1011–1021 (1992).
Yamada, J., Saitow, F., Satake, S., Kiyohara, T. & Konishi, S. GABA(B) receptor-mediated presynaptic inhibition of glutamatergic and GABA-ergic transmission in the basolateral amygdala. Neuropharmacology 38, 1743–1753 (1999).
Bettler, B., Kaupmann, K., Mosbacher, J. & Gassmann, M. Molecular structure and physiological functions of GABA(B) receptors. Physiol. Rev. 84, 835–867 (2004).
Fritschy, J.M. et al. GABAB-receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur. J. Neurosci. 11, 761–768 (1999).
McDonald, A.J., Mascagni, F. & Muller, J.F. Immunocytochemical localization of GABABR1 receptor subunits in the basolateral amygdala. Brain Res. 1018, 147–158 (2004).
Lüscher, C., Jan, L.Y., Stoffel, M., Malenka, R.C. & Nicoll, R.A. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19, 687–695 (1997).
Huang, Y.Y. & Kandel, E.R. Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21, 169–178 (1998).
Szinyei, C., Heinbockel, T., Montagne, J. & Pape, H.C. Putative cortical and thalamic inputs elicit convergent excitation in a population of GABAergic interneurons of the lateral amygdala. J. Neurosci. 20, 8909–8915 (2000).
Sugita, S. & North, R.A. Opioid actions on neurons of rat lateral amygdala in vitro. Brain Res. 612, 151–155 (1993).
Billinton, A., Upton, N. & Bowery, N.G. GABA(B) receptor isoforms GBR1a and GBR1b, appear to be associated with pre- and postsynaptic elements respectively in rat and human cerebellum. Br. J. Pharmacol. 126, 1387–1392 (1999).
Benke, D., Honer, M., Michel, C., Bettler, B. & Mohler, H. Gamma-aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential regional and subcellular distribution. J. Biol. Chem. 274, 27323–27330 (1999).
Vigot, R. et al. Different compartmentalization and distinct functions of GABAB receptor variants. Neuron 50, 589–601 (2006).
Perez-Garci, E., Gassmann, M., Bettler, B. & Larkum, M.E. The GABA(B1b) isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50, 603–616 (2006).
Davies, C.H., Starkey, S.J., Pozza, M.F. & Collingridge, G.L. GABA autoreceptors regulate the induction of LTP. Nature 349, 609–611 (1991).
Kulik, A. et al. Distinct localization of GABAB receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur. J. Neurosci. 15, 291–307 (2002).
Jarrell, T.W., Gentile, C.G., Romanski, L.M., McCabe, P.M. & Schneiderman, N. Involvement of cortical and thalamic auditory regions in retention of differential bradycardia conditioning to acoustic conditioned stimuli in rabbits. Brain Res. 412, 285–294 (1987).
Armony, J.L., Servan-Schreiber, D., Romanski, L.M., Cohen, J.D. & LeDoux, J.E. Stimulus generalization of fear responses: effects of auditory cortex lesions in a computational model and in rats. Cereb. Cortex 7, 157–165 (1997).
Laxmi, T.R., Stork, O. & Pape, H.C. Generalisation of conditioned fear and its behavioural expression in mice. Behav. Brain Res. 145, 89–98 (2003).
Baldi, E., Lorenzini, C.A. & Bucherelli, C. Footshock intensity and generalization in contextual and auditory-cued fear conditioning in the rat. Neurobiol. Learn. Mem. 81, 162–166 (2004).
Xia, Z. & Storm, D.R. The role of calmodulin as a signal integrator for synaptic plasticity. Nat. Rev. Neurosci. 6, 267–276 (2005).
Nicoll, R.A. & Malenka, R.C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).
Lauri, S.E. et al. A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron 32, 697–709 (2001).
Schmitz, D., Mellor, J., Breustedt, J. & Nicoll, R.A. Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat. Neurosci. 6, 1058–1063 (2003).
Thompson, R.F. The role of the cerebral cortex in stimulus generalization. J. Comp. Physiol. Psychol. 55, 279–287 (1962).
Weinberger, N.M. Specific long-term memory traces in primary auditory cortex. Nat. Rev. Neurosci. 5, 279–290 (2004).
Collins, D.R. & Paré, D. Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(-). Learn. Mem. 7, 97–103 (2000).
Mahanty, N.K. & Sah, P. Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394, 683–687 (1998).
Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).
Bauer, E.P. & LeDoux, J.E. Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala. J. Neurosci. 24, 9507–9512 (2004).
Zhu, P.J. & Lovinger, D.M. Retrograde endocannabinoid signaling in a postsynaptic neuron/synaptic bouton preparation from basolateral amygdala. J. Neurosci. 25, 6199–6207 (2005).
Pelletier, J.G. & Paré, D. Role of amygdala oscillations in the consolidation of emotional memories. Biol. Psychiatry 55, 559–562 (2004).
Acknowledgements
We thank J. Cryan, B. Gähwiler, K. Vogt and all members of the Lüthi lab for helpful discussions and comments on the manuscript. This work was supported by the Swiss Science Foundation, the Centre National de la Recherche Scientifique (CNRS), and the Novartis Research Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Fig. 1
Baclofen-induced presynaptic inhibition of monosynaptic IPSCs is not affected in GABAB(1a)- or GABAB(1b)-deficient mice. (PDF 11 kb)
Supplementary Fig. 2
Synaptic activation of presynaptic GABAB receptors is lost in GABAB(1a)−/− mice. (PDF 17 kb)
Supplementary Fig. 3
GABAB receptor blockade facilitates postsynaptic induction of NMDA receptor-dependent LTP at thalamic afferents to the lateral amygdala. (PDF 86 kb)
Supplementary Fig. 4
Absence of conditioned fear in GABAB(1b)−/− mice. (PDF 16 kb)
Supplementary Fig. 5
Increasing stimulation frequency during LTP induction (45 stimuli) in the absence of CGP55845A does not induce significant homosynaptic non-associative LTP at cortical afferents. (PDF 11 kb)
Rights and permissions
About this article
Cite this article
Shaban, H., Humeau, Y., Herry, C. et al. Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nat Neurosci 9, 1028–1035 (2006). https://doi.org/10.1038/nn1732
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn1732
This article is cited by
-
Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites
Nature Communications (2023)
-
Adenosine A2A receptors control generalization of contextual fear in rats
Translational Psychiatry (2023)
-
Presynaptic GABAB receptor inhibition sex dependently enhances fear extinction and attenuates fear renewal
Psychopharmacology (2021)
-
Adaptive disinhibitory gating by VIP interneurons permits associative learning
Nature Neuroscience (2019)
-
Animal models of PTSD: a challenge to be met
Molecular Psychiatry (2019)