Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BDNF-mediated neurotransmission relies upon a myosin VI motor complex

This article has been updated

Abstract

Brain-derived neurotrophic factor (BDNF) has been implicated in higher-order cognitive functions and in psychiatric disorders such as depression and schizophrenia. BDNF modulates synaptic transmission and plasticity primarily through the TrkB receptor, but the molecules involved in BDNF-mediated synaptic modulation are largely unknown. Myosin VI (Myo6) is a minus end–directed actin-based motor found in neurons that express Trk receptors. Here we report that Myo6 and a Myo6-binding protein, GIPC1, form a complex that can engage TrkB. Myo6 and GIPC1 were necessary for BDNF-TrkB–mediated facilitation of long-term potentiation in postnatal day 12–13 (P12–13) hippocampus. Moreover, BDNF-mediated enhancement of glutamate release from presynaptic terminals depended not only upon TrkB but also upon Myo6 and GIPC1. Similar defects in basal synaptic transmission as well as presynaptic properties were observed in Myo6 and GIPC1 mutant mice. Together, these results define an important role for the Myo6-GIPC1 motor complex in presynaptic function and in BDNF-TrkB–mediated synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trk associates with GIPC1-Myo6 motor complex.
Figure 2: Synaptic localization of GIPC1.
Figure 3: Impaired basal synaptic transmission in Myo6- and GIPC1-deficient mice.
Figure 4: Presynaptic deficits in Myo6- and GIPC1-deficient mice.
Figure 5: GIPC1 and Myo6 are necessary for BDNF-induced synaptic transmission.
Figure 6: TrkB cell surface expression and signaling.
Figure 7: Reduction in the number of neurotransmitter release sites in Myo6sv/sv and Gipc1−/− mice.
Figure 8: Requirement of GIPC1 and Myo6 for BDNF-induced glutamate release.

Similar content being viewed by others

Change history

  • 16 July 2006

    File replaced

Notes

  1. *NOTE: In the supplementary information initially published online to accompany this article, the units for values reported in the supplementary methods are incorrect. The correct unit should be µ. The error has been corrected online.

References

  1. Thoenen, H. Neurotrophins and neuronal plasticity. Science 270, 593–598 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. McAllister, A.K., Katz, L.C. & Lo, D.C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Poo, M.M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lu, B. BDNF and activity-dependent synaptic modulation. Learn. Mem. 10, 86–98 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Drake, C.T., Milner, T.A. & Patterson, S.L. Ultrastructural localization of full-length trkB immunoreactivity in rat hippocampus suggests multiple roles in modulating activity-dependent synaptic plasticity. J. Neurosci. 19, 8009–8026 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aoki, C. et al. Localization of brain-derived neurotrophic factor and TrkB receptors to postsynaptic densities of adult rat cerebral cortex. J. Neurosci. Res. 59, 454–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Purcell, A.L. & Carew, T.J. Tyrosine kinases, synaptic plasticity and memory: insights from vertebrates and invertebrates. Trends Neurosci. 26, 625–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Korte, M. et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 92, 8856–8860 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patterson, S.L. et al. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Minichiello, L. et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Kang, H., Welcher, A.A., Shelton, D. & Schuman, E.M. Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19, 653–664 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Figurov, A., Pozzo-Miller, L.D., Olafsson, P., Wang, T. & Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Egan, M.F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Nestler, E.J. et al. Neurobiology of depression. Neuron 34, 13–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Gauthier, L.R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Lohof, A.M., Ip, N.Y. & Poo, M.M. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363, 350–353 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Lessmann, V., Gottmann, K. & Heumann, R. BDNF and NT-4/5 enhance glutamatergic synaptic transmission in cultured hippocampal neurones. Neuroreport 6, 21–25 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Li, Y.X., Zhang, Y., Lester, H.A., Schuman, E.M. & Davidson, N. Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J. Neurosci. 18, 10231–10240 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schinder, A.F. & Poo, M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 23, 639–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Jovanovic, J.N., Czernik, A.J., Fienberg, A.A., Greengard, P. & Sihra, T.S. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat. Neurosci. 3, 323–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Li, Y.X. et al. Expression of a dominant negative TrkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 95, 10884–10889 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pozzo-Miller, L.D. et al. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J. Neurosci. 19, 4972–4983 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dillon, C. & Goda, Y. The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci. 28, 25–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Lou, X., Yano, H., Lee, F., Chao, M.V. & Farquhar, M.G. GIPC and GAIP form a complex with TrkA: a putative link between G protein and receptor tyrosine kinase pathways. Mol. Biol. Cell 12, 615–627 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roberts, R. et al. Myosin VI: cellular functions and motor properties. Phil. Trans. R. Soc. Lond. B 359, 1931–1944 (2004).

    Article  CAS  Google Scholar 

  26. Krendel, M. & Mooseker, M.S. Myosins: tails (and heads) of functional diversity. Physiology (Bethesda) 20, 239–251 (2005).

    CAS  Google Scholar 

  27. De Vries, L., Lou, X., Zhao, G., Zheng, B. & Farquhar, M.G. GIPC, a PDZ domain containing protein, interacts specifically with the C terminus of RGS-GAIP. Proc. Natl. Acad. Sci. USA 95, 12340–12345 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bunn, R.C., Jensen, M.A. & Reed, B.C. Protein interactions with the glucose transporter binding protein GLUT1CBP that provide a link between GLUT1 and the cytoskeleton. Mol. Biol. Cell 10, 819–832 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, L.H., Kalb, R.G. & Strittmatter, S.M.A. PDZ protein regulates the distribution of the transmembrane semaphorin, M-SemF. J. Biol. Chem. 274, 14137–14146 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Reed, B.C. et al. GLUT1CBP(TIP2/GIPC1) interactions with GLUT1 and Myo6: evidence supporting an adapter function for GLUT1CBP. Mol. Biol. Cell 16, 4183–4201 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hasson, T. Myosin VI: two distinct roles in endocytosis. J. Cell Sci. 116, 3453–3461 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Osterweil, E., Wells, D.G. & Mooseker, M.S. A role for Myo6 in postsynaptic structure and glutamate receptor endocytosis. J. Cell Biol. 168, 329–338 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Avraham, K.B. et al. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat. Genet. 11, 369–375 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Janz, R. et al. Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 24, 687–700 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Ryan, T.A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Tyler, W.J., Perrett, S.P. & Pozzo-Miller, L.D. The role of neurotrophins in neurotransmitter release. Neuroscientist 8, 524–531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bridgman, P.C. Myosin-dependent transport in neurons. J. Neurobiol. 58, 164–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. DePina, A.S. & Langford, G.M. Vesicle transport: the role of actin filaments and myosin motors. Microsc. Res. Tech. 47, 93–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Prekeris, R. & Terrian, D.M. Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J. Cell Biol. 137, 1589–1601 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Evans, L.L., Lee, A.J., Bridgman, P.C. & Mooseker, M.S. Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J. Cell Sci. 111, 2055–2066 (1998).

    CAS  PubMed  Google Scholar 

  42. Watanabe, M. et al. Myosin-Va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A. Mol. Biol. Cell 16, 4519–4530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, H., Nash, J.E., Zamorano, P. & Garner, C.C. Interaction of SAP97 with minus-end-directed actin motor Myo6. Implications for AMPA receptor trafficking. J. Biol. Chem. 277, 30928–30934 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Greengard, P., Valtorta, F., Czernik, A.J. & Benfenati, F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  PubMed  Google Scholar 

  46. Petrone, A. et al. Receptor protein tyrosine phosphatase á is essential for hippocampal neuronal migration and long-term potentiation. EMBO J. 22, 4121–4131 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arancio, O., Kandel, E.R. & Hawkins, R.D. Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons. Nature 376, 74–80 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Ninan, I. & Arancio, O. Presynaptic CaMKII is necessary for synaptic plasticity in cultured hippocampal neurons. Neuron 42, 129–141 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Jenkins (National Cancer Institute, Frederick, Maryland) for porcine Myo6 cDNAs; T. Hasson (University of California, San Diego) for anti-Myo6 antibody; I. Taniuchi and D. Littman (New York University) for advice on the generation of Gipc1 mutant mice; A. Auerbach and staff members of the Transgenic Animal Facility (New York University) for assistance; R. Rajagopal, J.C. Arevalo, M. Beyna, D.B. Pereira and A.H. Kim for reagents and advice; D.C. Powell for writing the program for Matlab analysis; and I. Orozco and P.K. Hsu (Columbia University, New York) for assistance during electrophysiological experiments. This work was funded by US National Institutes of Health grants to M.V.C. (HD23315 and NS21072), O.A. (NS40045) and T.M. (HL-18974 and DA08259).

Author information

Authors and Affiliations

Authors

Contributions

H.Y. performed the cell and molecular biology experiments and the mouse genetics. T.A.M. conducted the electron microscopy experiments. O.A. supervised and I.N and H.Z. performed FM dye and electrophysiological studies.

Corresponding author

Correspondence to Moses V Chao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Association of Trk with Myo6 through GIPC1. (PDF 846 kb)

Supplementary Fig. 2

Localization and movement of GIPC1-GFP punctae in live hippocampal processes. (PDF 1306 kb)

Supplementary Fig. 3

Normal synaptic fatigue and LTP in adult Myo6- and GIPC1-deficient mice. (PDF 923 kb)

Supplementary Methods (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yano, H., Ninan, I., Zhang, H. et al. BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nat Neurosci 9, 1009–1018 (2006). https://doi.org/10.1038/nn1730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing