Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The first neurons of the human cerebral cortex

Abstract

We describe a distinctive, widespread population of neurons situated beneath the pial surface of the human embryonic forebrain even before complete closure of the neural tube. These 'predecessor' cells include the first neurons seen in the primordium of the cerebral cortex, before the onset of local neurogenesis. Morphological analysis, combined with the study of centrosome location, regional transcription factors and patterns of mitosis and neurogenesis, indicates that predecessor cells invade the cortical primordium by tangential migration from the subpallium. These neurons, described here for the first time, precede all other known cell types of the developing cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Predecessor neurons in the forebrain and pioneer cells in the olfactory placode (OLP).
Figure 2: Predecessor neurons are present in the cortical primordium before the onset of local neurogenesis.
Figure 3: Patterns of mitosis and evidence for the direction of neuronal migration.
Figure 4: Expression of regional transcription factors in the telencephalon.
Figure 5: Predecessor neurons are neither interneurons of basal origin nor Cajal-Retzius cells.

Similar content being viewed by others

References

  1. Muller, F. & O'Rahilly, R. Olfactory structures in staged human embryos. Cells Tissues Organs 178, 93–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Sidman, R.L. & Rakic, P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 62, 1–35 (1973).

    Article  CAS  PubMed  Google Scholar 

  3. Marin-Padilla, M. Cajal-Retzius cells and the development of the neocortex. Trends Neurosci. 21, 64–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Boulder Committee. Embryonic vertebrate central nervous system: revised terminology. Anat. Rec. 166, 257–261 (1970).

  5. Lavdas, A.A., Grigoriou, M., Pachnis, V. & Parnavelas, J.G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meyer, G., Perez-Garcia, C.G., Abraham, H. & Caput, D. Expression of p73 and Reelin in the developing human cortex. J. Neurosci. 22, 4973–4986 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bielle, F. et al. Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat. Neurosci. 8, 1002–1012 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Rakic, S. & Zecevic, N. Emerging complexity of layer I in human cerebral cortex. Cereb. Cortex 13, 1072–1083 (2003).

    Article  PubMed  Google Scholar 

  9. Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 417, 645–649 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Ang, E.S., Jr., Haydar, T.F., Gluncic, V. & Rakic, P. Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J. Neurosci. 23, 5805–5815 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Metin, C., Baudoin, J.P., Rakic, S. & Parnavelas, J.G. Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur. J. Neurosci. 23, 894–900 (2006).

    Article  PubMed  Google Scholar 

  12. Anderson, S.A., Eisenstat, D.D., Shi, L. & Rubenstein, J.L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Kohtz, J.D., Baker, D.P., Corte, G. & Fishell, G. Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic Hedgehog. Development 125, 5079–5089 (1998).

    CAS  PubMed  Google Scholar 

  14. Eisenstat, D.D. et al. DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J. Comp. Neurol. 414, 217–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Corbin, J.G., Nery, S. & Fishell, G. Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat. Neurosci. 4 Suppl, 1177–1182 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Meyer, G., Soria, J.M., Martinez-Galan, J.R., Martin-Clemente, B. & Fairen, A. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397, 493–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. O'Rahilly, R.M.F. The Embryonic Human Brain: An Atlas of Developmental Stages (Wiley-Liss, New York, 1999).

  18. Calof, A.L. et al. Progenitor cells of the olfactory receptor neuron lineage. Microsc. Res. Tech. 58, 176–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Whitlock, K.E. A new model for olfactory placode development. Brain Behav. Evol. 64, 126–140 (2004).

    Article  PubMed  Google Scholar 

  20. Iacopetti, P. et al. Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc. Natl. Acad. Sci. USA 96, 4639–4644 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weissman, T., Noctor, S.C., Clinton, B.K., Honig, L.S. & Kriegstein, A.R. Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb. Cortex 13, 550–559 (2003).

    Article  PubMed  Google Scholar 

  22. Tsai, L.H. & Gleeson, J.G. Nucleokinesis in neuronal migration. Neuron 46, 383–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Solecki, D.J., Model, L., Gaetz, J., Kapoor, T.M. & Hatten, M.E. Par6α signaling controls glial-guided neuronal migration. Nat. Neurosci. 7, 1195–1203 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Bellion, A., Baudoin, J.P., Alvarez, C., Bornens, M. & Metin, C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J. Neurosci. 25, 5691–5699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu, C. et al. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol. Biol. Cell 16, 3187–3199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyer, G., Goffinet, A.M. & Fairen, A. What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb. Cortex 9, 765–775 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Hevner, R.F., Neogi, T., Englund, C., Daza, R.A. & Fink, A. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Brain Res. Dev. Brain Res. 141, 39–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Meyer, G., Schaaps, J.P., Moreau, L. & Goffinet, A.M. Embryonic and early fetal development of the human neocortex. J. Neurosci. 20, 1858–1868 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kohtz, J.D. et al. N-terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons. Development 128, 2351–2363 (2001).

    CAS  PubMed  Google Scholar 

  30. Anderson, S.A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J.L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).

    CAS  PubMed  Google Scholar 

  31. Bulfone, A. et al. T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15, 63–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Hevner, R.F. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Whitlock, K.E. & Westerfield, M. A transient population of neurons pioneers the olfactory pathway in the zebrafish. J. Neurosci. 18, 8919–8927 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haubensak, W., Attardo, A., Denk, W. & Huttner, W.B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl. Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kennedy, H. & Dehay, C. Cortical specification of mice and men. Cereb. Cortex 3, 171–186 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Valverde, F., De Carlos, J.A. & Lopez-Mascaraque, L. Time of origin and early fate of preplate cells in the cerebral cortex of the rat. Cereb. Cortex 5, 483–493 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Rakic, P. & Sidman, R.L. Supravital DNA synthesis in the developing human and mouse brain. J. Neuropathol. Exp. Neurol. 27, 246–276 (1968).

    Article  CAS  PubMed  Google Scholar 

  40. Carney, R.S.E., Bystron, I., Blakemore, C., Molnár, Z. & López-Bendito, G. Radial glial cell proliferation outside the proliferative zone: A quantitative study in fetal rat and human cortex. FENS Forum Abstr. 2, 145.4 (2004).

    Google Scholar 

  41. Jimenez, D., Lopez-Mascaraque, L.M., Valverde, F. & De Carlos, J.A. Tangential migration in neocortical development. Dev. Biol. 244, 155–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Marin, O. & Rubenstein, J.L. Cell migration in the forebrain. Annu. Rev. Neurosci. 26, 441–483 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Nadarajah, B., Brunstrom, J.E., Grutzendler, J., Wong, R.O. & Pearlman, A.L. Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Whitlock, K.E. & Westerfield, M. The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate. Development 127, 3645–3653 (2000).

    CAS  PubMed  Google Scholar 

  45. Bystron, I., Molnar, Z., Otellin, V. & Blakemore, C. Tangential networks of precocious neurons and early axonal outgrowth in the embryonic human forebrain. J. Neurosci. 25, 2781–2792 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Committee to Review the Guidance on the Research Use of Fetuses and Fetal Material. Review of the guidance on the research use of fetuses and fetal material (Her Majesty's Stationery Office, London 1989).

Download references

Acknowledgements

We are grateful to L.H. Tsai and Z. Xie for discussion about centrosomal function. We thank A. Goffinet, J. Kohtz and R. Hevner for generous gifts of reelin, Dlx and Tbr1 antibodies, respectively. This work was supported by grants from the UK Medical Research Council (C.B. and Z.M.), the US Public Health Service and the Kavli Institute for Neuroscience at Yale (P.R.), the Russian Foundation for Basic Research and Leading Scientific Schools in Russia (I.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Bystron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bystron, I., Rakic, P., Molnár, Z. et al. The first neurons of the human cerebral cortex. Nat Neurosci 9, 880–886 (2006). https://doi.org/10.1038/nn1726

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing