Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The representation of perceived angular size in human primary visual cortex

Abstract

Two objects that project the same visual angle on the retina can appear to occupy very different proportions of the visual field if they are perceived to be at different distances. What happens to the retinotopic map in primary visual cortex (V1) during the perception of these size illusions? Here we show, using functional magnetic resonance imaging (fMRI), that the retinotopic representation of an object changes in accordance with its perceived angular size. A distant object that appears to occupy a larger portion of the visual field activates a larger area in V1 than an object of equal angular size that is perceived to be closer and smaller. These results demonstrate that the retinal size of an object and the depth information in a scene are combined early in the human visual system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimulus for the behavioral and fMRI experiments.
Figure 2: ROIs.
Figure 3: Imaging results.
Figure 4: Control experiments.

Similar content being viewed by others

References

  1. Holway, A.H. & Boring, E.G. Determinants of apparent visual size with distance variant. Am. J. Psychol. 54, 21–37 (1941).

    Article  Google Scholar 

  2. Joynson, R.B. The problem of size and distance. Q. J. Exp. Psychol. 1, 119–135 (1949).

    Article  Google Scholar 

  3. Gilinsky, A.S. The effect of attitude upon the perception of size. Am. J. Psychol. 68, 173–192 (1955).

    Article  CAS  Google Scholar 

  4. Ono, H. Distal and proximal size under reduced and non-reduced viewing conditions. Am. J. Psychol. 79, 234–241 (1966).

    Article  CAS  Google Scholar 

  5. Kaufman, L. & Rock, I. The moon illusion, I. Science 136, 953–961 (1962).

    Article  CAS  Google Scholar 

  6. King, W.L. & Gruber, H.E. Moon illusion & Emmert's law. Science 135, 1125–1126 (1962).

    Article  CAS  Google Scholar 

  7. Rock, I. & Kaufman, L. The moon illusion, II. Science 136, 1023–1031 (1962).

    Article  CAS  Google Scholar 

  8. Kaufman, L. & Kaufman, J.H. Explaining the moon illusion. Proc. Natl. Acad. Sci. USA 97, 500–505 (2000).

    Article  CAS  Google Scholar 

  9. Foley, J.M. The size-distance relation and intrinsic geometry of visual space: implications for processing. Vision Res. 12, 323–332 (1972).

    Article  CAS  Google Scholar 

  10. Jenkin, N. & Hyman, R. Attitude and distance-estimation as variables in size-matching. Am. J. Psychol. 72, 68–76 (1959).

    Article  Google Scholar 

  11. Leibowitz, H., Brislin, R., Perlmutter, L. & Hennessy, R. Ponzo perspective illusion as a manifestation of space perception. Science 166, 1174–1176 (1969).

    Article  CAS  Google Scholar 

  12. McCready, D. On size, distance, and visual angle perception. Percept. Psychophys. 37, 323–334 (1985).

    Article  CAS  Google Scholar 

  13. Engel, S.A., Glover, G.H. & Wandell, B.A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

  14. Sereno, M.I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  Google Scholar 

  15. Tootell, R.B. et al. The retinotopy of visual spatial attention. Neuron 21, 1409–1422 (1998).

    Article  CAS  Google Scholar 

  16. Somers, D.C., Dale, A.M., Seiffert, A.E. & Tootell, R.B. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 1663–1668 (1999).

    Article  CAS  Google Scholar 

  17. Ress, D., Backus, B.T. & Heeger, D.J. Activity in primary visual cortex predicts performance in a visual detection task. Nat. Neurosci. 3, 940–945 (2000).

    Article  CAS  Google Scholar 

  18. Barlow, H. Temporal and spatial summation in human vision at different background intensities. J. Physiol. (Lond.) 141, 337–350 (1958).

    Article  CAS  Google Scholar 

  19. Kersten, D. Spatial summation in visual noise. Vision Res. 24, 1977–1990 (1984).

    Article  CAS  Google Scholar 

  20. Richards, W. Apparent modifiability of receptive fields during accommodation and convergence and a model for size constancy. Neuropsychologia 5, 63–72 (1967).

    Article  Google Scholar 

  21. Whitney, D. et al. Flexible retinotopy: motion-dependent position coding in the visual cortex. Science 302, 878–881 (2003).

    Article  CAS  Google Scholar 

  22. Richards, W. Spatial remapping in the primate visual system. Kybernetik 4, 146–156 (1968).

    Article  CAS  Google Scholar 

  23. Marg, E. & Adams, J.E. Evidence for a neurological zoom system in vision from angular changes in some receptive fields of single neurons with changes in fixation distance in the human visual cortex. Experientia 26, 270–271 (1970).

    Article  CAS  Google Scholar 

  24. Trotter, Y., Celebrini, S., Stricanne, B., Thorpe, S. & Imbert, M. Modulation of neural stereoscopic processing in primate area V1 by the viewing distance. Science 257, 1279–1281 (1992).

    Article  CAS  Google Scholar 

  25. Dobbins, A.C., Jeo, R.M., Fiser, J. & Allman, J.M. Distance modulation of neural activity in the visual cortex. Science 281, 552–555 (1998).

    Article  CAS  Google Scholar 

  26. Anderson, C.H. & Van Essen, D.C. Shifter circuits: a computational strategy for dynamic aspects of visual processing. Proc. Natl. Acad. Sci. USA 84, 6297–6301 (1987).

    Article  CAS  Google Scholar 

  27. Larson, G.W. & Shakespeare, R. Rendering with Radiance: the Art and Science of Lighting and Visualization (Morgan Kaufmann, San Francisco, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank S. He, F. Fang and P. Sinha for their comments and suggestions related to this manuscript. This work was supported by the US National Institutes of Health (F32 EY015342 to S.O.M. and RO1 EY-015261 to D.K.) and the National Geo-Spatial Intelligence Agency (HM1582-05-C-0003 to S.O.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott O Murray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Additional behavioural measurements (PDF 60 kb)

Supplementary Data

Across subject comparison of behavioural and fMRI effect size (PDF 50 kb)

Supplementary Note

Binocular viewing and vergence eye movements (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, S., Boyaci, H. & Kersten, D. The representation of perceived angular size in human primary visual cortex. Nat Neurosci 9, 429–434 (2006). https://doi.org/10.1038/nn1641

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1641

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing