Abstract
An ultimate goal of systems neuroscience is to understand how sensory stimuli encountered in the natural environment are processed by neural circuits. Achieving this goal requires knowledge of both the characteristics of natural stimuli and the response properties of sensory neurons under natural stimulation. Most of our current notions of sensory processing have come from experiments using simple, parametric stimulus sets. However, a growing number of researchers have begun to question whether this approach alone is sufficient for understanding the real-life sensory tasks performed by the organism. Here, focusing on the early visual pathway, we argue that the use of natural stimuli is vital for advancing our understanding of sensory processing.
Access options
Subscribe to Journal
Get full journal access for 1 year
$209.00
only $17.42 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Simoncelli, E.P. & Olshausen, B.A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).
- 2
Hartline, H.K. The receptive fields of optic nerve fibers. Am. J. Physiol. 130, 690–699 (1940).
- 3
Hubel, D.H. & Wiesel, T.N. Integrative action in the cat's lateral geniculate body. J. Physiol. (Lond.) 155, 385–398 (1961).
- 4
Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).
- 5
Reid, R.C., Victor, J.D. & Shapley, R.M. The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis. Neurosci. 14, 1015–1027 (1997).
- 6
Marmarelis, P.Z. & Marmarelis, V.Z. Analysis of Physiological Systems: The White-Noise Approach (Plenum, New York, 1978).
- 7
Ringach, D.L., Hawken, M.J. & Shapley, R. Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 (1997).
- 8
Mazer, J.A., Vinje, W.E., McDermott, J., Schiller, P.H. & Gallant, J.L. Spatial frequency and orientation tuning dynamics in area V1. Proc. Natl. Acad. Sci. USA 99, 1645–1650 (2002).
- 9
Felsen, G. et al. Dynamic modification of cortical orientation tuning mediated by recurrent connections. Neuron 36, 945–954 (2002).
- 10
Bredfeldt, C.E. & Ringach, D.L. Dynamics of spatial frequency tuning in macaque V1. J. Neurosci. 22, 1976–1984 (2002).
- 11
Touryan, J., Felsen, G. & Dan, Y. Spatial structure of complex cell receptive fields measured with natural images. Neuron 45, 781–791 (2005).
- 12
Felsen, G., Touryan, J., Han, F. & Dan, Y. Cortical sensitivity to visual features in natural scenes. PLoS Biol. 3, 1819–1828 (2005).
- 13
David, S.V., Vinje, W.E. & Gallant, J.L. Natural stimulus statistics alter the receptive field structure of V1 neurons. J. Neurosci. 24, 6991–7006 (2004).
- 14
Ringach, D.L., Hawken, M.J. & Shapley, R. Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. J. Vis. 2, 12–24 (2002).
- 15
Smyth, D., Willmore, B., Baker, G.E., Thompson, I.D. & Tolhurst, D.J. The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J. Neurosci. 23, 4746–4759 (2003).
- 16
Sharpee, T., Rust, N.C. & Bialek, W. Analyzing neural responses to natural signals: maximally informative dimensions. Neural Comput. 16, 223–250 (2004).
- 17
Prenger, R., Wu, M.C., David, S.V. & Gallant, J.L. Nonlinear V1 responses to natural scenes revealed by neural network analysis. Neural Netw. 17, 663–679 (2004).
- 18
Dan, Y., Atick, J.J. & Reid, R.C. Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J. Neurosci. 16, 3351–3362 (1996).
- 19
Adelson, E.H. & Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).
- 20
Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).
- 21
Mechler, F., Reich, D.S. & Victor, J.D. Detection and discrimination of relative spatial phase by V1 neurons. J. Neurosci. 22, 6129–6157 (2002).
- 22
Rieke, F., Bodnar, D.A. & Bialek, W. Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc. Biol. Sci. 262, 259–265 (1995).
- 23
Woolley, S.M., Fremouw, T.E., Hsu, A. & Theunissen, F.E. Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nat. Neurosci. 8, 1371–1379 (2005).
- 24
Attneave, F. Some informational aspects of visual perception. Psychol. Rev. 61, 183–193 (1954).
- 25
Dong, D.W. & Atick, J.J. Statistics of natural time varying images. Netw. Comput. Neural Syst. 6, 345–358 (1995).
- 26
Srinivasan, M.V., Laughlin, S.B. & Dubs, A. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. B 216, 427–459 (1982).
- 27
Atick, J.J. Could information theory provide an ecological theory of sensory processing? Netw. Comput. Neural Syst. 3, 213–251 (1992).
- 28
Dong, D.W. & Atick, J.J. Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus. Netw. Comput. Neural Syst. 6, 159–178 (1995).
- 29
Barlow, H.B. Possible principles underlying the transformation of sensory messages. in Sensory Communication (ed. Rosenblith, W.A.) 217–234 (MIT Press, Cambridge, Massachusetts, USA, 1961).
- 30
Schwartz, O. & Simoncelli, E.P. Natural signal statistics and sensory gain control. Nat. Neurosci. 4, 819–825 (2001).
- 31
Field, D.J. What is the goal of sensory coding? Neural Comput. 6, 559–601 (1994).
- 32
Willmore, B. & Tolhurst, D.J. Characterizing the sparseness of neural codes. Network 12, 255–270 (2001).
- 33
Olshausen, B.A. & Field, D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).
- 34
Bell, A.J. & Sejnowski, T.J. The “independent components” of natural scenes are edge filters. Vision Res. 37, 3327–3338 (1997).
- 35
van Hateren, J.H. & Ruderman, D.L. Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proc. R. Soc. B Biol. Sci. 265, 2315–2320 (1998).
- 36
Caywood, M.S., Willmore, B. & Tolhurst, D.J. Independent components of color natural scenes resemble V1 neurons in their spatial and color tuning. J. Neurophysiol. 91, 2859–2873 (2004).
- 37
Lipton, P. Testing hypotheses: prediction and prejudice. Science 307, 219–221 (2005).
- 38
Hyvarinen, A., Gutmann, M. & Hoyer, P.O. Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2. BMC Neurosci. 6, 12 (2005).
- 39
Karklin, Y. & Lewicki, M.S. Learning higher-order structures in natural images. Network 14, 483–499 (2003).
- 40
Oppenheim, A.V. & Lim, J.S. The importance of phase in signals. Proc. IEEE. Inst. Electr. Electron. Eng. 69, 529–541 (1981).
- 41
Thomson, M.G. Beats, kurtosis and visual coding. Network 12, 271–287 (2001).
- 42
Wang, Z. & Simoncelli, E.P. Local phase coherence and the perception of blur. in Advances in Neural Information Processing Systems, Vol. 16 (eds. Thrun, S., Saul, L. & Scholkopf, B.) (MIT Press, Cambridge, Massachusetts, USA, 2003).
- 43
Coppola, D.M., Purves, H.R., McCoy, A.N. & Purves, D. The distribution of oriented contours in the real world. Proc. Natl. Acad. Sci. USA 95, 4002–4006 (1998).
- 44
Kayser, C., Einhauser, W. & Konig, P. Temporal correlations of orientations in natural scenes. Neurocomputing 52, 117–123 (2003).
- 45
Passaglia, C., Dodge, F., Herzog, E., Jackson, S. & Barlow, R. Deciphering a neural code for vision. Proc. Natl. Acad. Sci. USA 94, 12649–12654 (1997).
- 46
Lewen, G.D., Bialek, W. & de Ruyter van Steveninck, R.R. Neural coding of naturalistic motion stimuli. Network 12, 317–329 (2001).
- 47
Lei, Y. et al. Telemetric recordings of single neuron activity and visual scenes in monkeys walking in an open field. J. Neurosci. Methods 135, 35–41 (2004).
- 48
Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996).
- 49
Fiser, J., Chiu, C. & Weliky, M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431, 573–578 (2004).
Acknowledgements
We thank F. Han, J. Touryan, B. Willmore and W. Vinje for helpful comments. This work was supported by a grant from the National Eye Institute (R01 EY12561).
Author information
Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Felsen, G., Dan, Y. A natural approach to studying vision. Nat Neurosci 8, 1643–1646 (2005). https://doi.org/10.1038/nn1608
Published:
Issue Date:
Further reading
-
Time will tell: Object categorization and emotional engagement during processing of degraded natural scenes
Psychophysiology (2021)
-
Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture
eLife (2020)
-
Direct Fit to Nature: An Evolutionary Perspective on Biological and Artificial Neural Networks
Neuron (2020)
-
Dissociable neural systems for unconditioned acute and sustained fear
NeuroImage (2020)
-
Keep it real: rethinking the primacy of experimental control in cognitive neuroscience
NeuroImage (2020)