Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The claw paw mutation reveals a role for Lgi4 in peripheral nerve development

Abstract

Peripheral nerve development results from multiple cellular interactions between axons, Schwann cells and the surrounding mesenchymal tissue. The delayed axonal sorting and hypomyelination throughout the peripheral nervous system of claw paw (clp) mutant mice suggest that the clp gene product is critical for these interactions. Here we identify the clp mutation as a 225-bp insertion in the Lgi4 gene. Lgi4 encodes a secreted and glycosylated leucine-rich repeat protein and is expressed in Schwann cells. The clp mutation affects Lgi4 mRNA splicing, resulting in a mutant protein that is retained in the cell. Additionally, siRNA-mediated downregulation of Lgi4 in wild-type neuron–Schwann cell cocultures inhibits myelination, whereas exogenous Lgi4 restores myelination in clp/clp cultures. Thus, the abnormalities observed in clp mice are attributable to the loss of Lgi4 function, and they identify Lgi4 as a new component of Schwann cell signaling pathway(s) that controls axon segregation and myelin formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The claw paw phenotype.
Figure 2: The clp candidate region (NCBI build 33.1) consists of eight genes: Fxyd5, Fxyd7, Fxyd1, Lgi4, Fxyd3, Hepsin, Scn1b and D7Bwg0611e.
Figure 3: The clp mutation is an insertion in Lgi4.
Figure 4: Embryonic expression of Lgi4.
Figure 5: Skipping of Lgi4clp exon 4 generates a protein with an internal deletion.
Figure 6: The clp mutation affects processing and sorting of Lgi4.
Figure 7: Inhibition of Lgi4 results in reduced myelination in DRG cultures and exogenous Lgi4 restores myelination in clp/clp DRG cultures.

Similar content being viewed by others

References

  1. Jessen, K.R. & Mirsky, R. Schwann Cell Development. in Myelin Biology and Disorders Vol. 1 (ed. Lazzarini, R.A.) 329–370 (Elsevier Academic, San Diego, 2004).

    Google Scholar 

  2. Lobsiger, C.S., Taylor, V. & Suter, U. The early life of a Schwann cell. Biol. Chem. 383, 245–253 (2002).

    Article  CAS  Google Scholar 

  3. Britsch, S. et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 12, 1825–1836 (1998).

    Article  CAS  Google Scholar 

  4. Garratt, A.N., Britsch, S. & Birchmeier, C. Neuregulin, a factor with many functions in the life of a Schwann cell. Bioessays 22, 987–996 (2000).

    Article  CAS  Google Scholar 

  5. Michailov, G.V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).

    Article  CAS  Google Scholar 

  6. Taveggia, C. et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–694 (2005).

    Article  CAS  Google Scholar 

  7. Cosgaya, J.M., Chan, J.R. & Shooter, E.M. The neurotrophin receptor p75NTR as a positive modulator of myelination. Science 298, 1245–1248 (2002).

    Article  CAS  Google Scholar 

  8. Chan, J.R. et al. NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43, 183–191 (2004).

    Article  CAS  Google Scholar 

  9. Fields, R.D. & Stevens-Graham, B. New insights into neuron-glia communication. Science 298, 556–562 (2002).

    Article  CAS  Google Scholar 

  10. Atanasoski, S. et al. The protooncogene Ski controls Schwann cell proliferation and myelination. Neuron 43, 499–511 (2004).

    Article  CAS  Google Scholar 

  11. Ogata, T. et al. Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J. Neurosci. 24, 6724–6732 (2004).

    Article  CAS  Google Scholar 

  12. Wegner, M. Transcriptional control in myelinating glia: the basic recipe. Glia 29, 118–123 (2000).

    Article  CAS  Google Scholar 

  13. Topilko, P. & Meijer, D. Transcription factors that control Schwann cell development and myelination. in Glial Cell Development (eds. Jessen, K.R. & Richardson, W.D.) 223–244 (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  14. Ghislain, J. et al. Characterisation of cis-acting sequences reveals a biphasic, axon-dependent regulation of Krox20 during Schwann cell development. Development 129, 155–166 (2002).

    CAS  PubMed  Google Scholar 

  15. Jaegle, M. et al. The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes Dev. 17, 1380–1391 (2003).

    Article  CAS  Google Scholar 

  16. Le, N. et al. Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc. Natl. Acad. Sci. USA 102, 2596–2601 (2005).

    Article  CAS  Google Scholar 

  17. Nagarajan, R. et al. EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron 30, 355–368 (2001).

    Article  CAS  Google Scholar 

  18. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  CAS  Google Scholar 

  19. Henry, E.W., Eicher, E.M. & Sidman, R.L. The mouse mutation claw paw: forelimb deformity and delayed myelination throughout the peripheral nervous system. J. Hered. 82, 287–294 (1991).

    Article  CAS  Google Scholar 

  20. Koszowski, A.G., Owens, G.C. & Levinson, S.R. The effect of the mouse mutation claw paw on myelination and nodal frequency in sciatic nerves. J. Neurosci. 18, 5859–5868 (1998).

    Article  CAS  Google Scholar 

  21. Darbas, A. et al. Cell autonomy of the mouse claw paw mutation. Dev. Biol. 272, 470–482 (2004).

    Article  CAS  Google Scholar 

  22. Bermingham, J.R., Jr. et al. Identification of genes that are downregulated in the absence of the POU domain transcription factor pou3f1 (Oct-6, Tst-1, SCIP) in sciatic nerve. J. Neurosci. 22, 10217–10231 (2002).

    Article  CAS  Google Scholar 

  23. Gu, W. et al. The LGI1 gene involved in lateral temporal lobe epilepsy belongs to a new subfamily of leucine-rich repeat proteins. FEBS Lett. 519, 71–76 (2002).

    Article  CAS  Google Scholar 

  24. Maro, G.S. et al. Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat. Neurosci. 7, 930–938 (2004).

    Article  CAS  Google Scholar 

  25. Staub, E. et al. The novel EPTP repeat defines a superfamily of proteins implicated in epileptic disorders. Trends Biochem. Sci. 27, 441–444 (2002).

    Article  CAS  Google Scholar 

  26. Scheel, H., Tomiuk, S. & Hofmann, K. A common protein interaction domain links two recently identified epilepsy genes. Hum. Mol. Genet. 11, 1757–1762 (2002).

    Article  CAS  Google Scholar 

  27. Buchanan, S.G. & Gay, N.J. Structural and functional diversity in the leucine-rich repeat family of proteins. Prog. Biophys. Mol. Biol. 65, 1–44 (1996).

    Article  CAS  Google Scholar 

  28. Kajava, A.V. Structural diversity of leucine-rich repeat proteins. J. Mol. Biol. 277, 519–527 (1998).

    Article  CAS  Google Scholar 

  29. Wong, K., Park, H.T., Wu, J.Y. & Rao, Y. Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Curr. Opin. Genet. Dev. 12, 583–591 (2002).

    Article  CAS  Google Scholar 

  30. Howitt, J.A., Clout, N.J. & Hohenester, E. Binding site for Robo receptors revealed by dissection of the leucine-rich repeat region of Slit. EMBO J. 23, 4406–4412 (2004).

    Article  CAS  Google Scholar 

  31. Gherardi, E., Love, C.A., Esnouf, R.M. & Jones, E.Y. The sema domain. Curr. Opin. Struct. Biol. 14, 669–678 (2004).

    Article  CAS  Google Scholar 

  32. Skradski, S.L. et al. A novel gene causing a mendelian audiogenic mouse epilepsy. Neuron 31, 537–544 (2001).

    Article  CAS  Google Scholar 

  33. Nakayama, J. et al. A nonsense mutation of the MASS1 gene in a family with febrile and afebrile seizures. Ann. Neurol. 52, 654–657 (2002).

    Article  CAS  Google Scholar 

  34. Kalachikov, S. et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat. Genet. 30, 335–341 (2002).

    Article  Google Scholar 

  35. Berkovic, S.F. et al. LGI1 mutations in temporal lobe epilepsies. Neurology 62, 1115–1119 (2004).

    Article  CAS  Google Scholar 

  36. Ottman, R. et al. LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 62, 1120–1126 (2004).

    Article  CAS  Google Scholar 

  37. Pisano, T. et al. Abnormal phonologic processing in familial lateral temporal lobe epilepsy due to a new LGI1 mutation. Epilepsia 46, 118–123 (2005).

    Article  CAS  Google Scholar 

  38. Gu, W., Sander, T., Becker, T. & Steinlein, O.K. Genotypic association of exonic LGI4 polymorphisms and childhood absence epilepsy. Neurogenetics 5, 41–44 (2004).

    Article  CAS  Google Scholar 

  39. Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191 (2003).

    Article  CAS  Google Scholar 

  40. Bonnon, C., Goutebroze, L., Denisenko-Nehrbass, N., Girault, J.A. & Faivre-Sarrailh, C. The paranodal complex of F3/contactin and caspr/paranodin traffics to the cell surface via a non-conventional pathway. J. Biol. Chem. 278, 48339–48347 (2003).

    Article  CAS  Google Scholar 

  41. Senechal, K.R., Thaller, C. & Noebels, J.L. ADPEAF mutations reduce levels of secreted LGI1, a putative tumor suppressor protein linked to epilepsy. Hum. Mol. Genet. 14, 1613–1620 (2005).

    Article  CAS  Google Scholar 

  42. Fernandez-Valle, C., Gorman, D., Gomez, A.M. & Bunge, M.B. Actin plays a role in both changes in cell shape and gene-expression associated with Schwann cell myelination. J. Neurosci. 17, 241–250 (1997).

    Article  CAS  Google Scholar 

  43. Wolpowitz, D. et al. Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 25, 79–91 (2000).

    Article  CAS  Google Scholar 

  44. Runkel, F., Michels, M. & Franz, T. Fxyd3 and Lgi4 expression in the adult mouse: a case of endogenous antisense expression. Mamm. Genome 14, 665–672 (2003).

    Article  CAS  Google Scholar 

  45. McKay, B.E. & Turner, R.W. Physiological and morphological development of the rat cerebellar Purkinje cell. J. Physiol. (Lond.) 567, 829–850 (2005).

    Article  CAS  Google Scholar 

  46. Bendtsen, J.D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: signalP 3.0. J. Mol. Biol. 340, 783–795 (2004).

    Article  Google Scholar 

  47. Mayor, C. et al. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16, 1046–1047 (2000).

    Article  CAS  Google Scholar 

  48. Archelos, J.J. et al. Production and characterization of monoclonal antibodies to the extracellular domain of P0. J. Neurosci. Res. 35, 46–53 (1993).

    Article  CAS  Google Scholar 

  49. Zhuang, Y.A., Goldstein, A.M. & Weiner, A.M. UACUAAC is the preferred branch site for mammalian mRNA splicing. Proc. Natl. Acad. Sci. USA 86, 2752–2756 (1989).

    Article  CAS  Google Scholar 

  50. Hart, G.W., Brew, K., Grant, G.A., Bradshaw, R.A. & Lennarz, W.J. Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. Studies with natural and synthetic peptides. J. Biol. Chem. 254, 9747–9753 (1979).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Krajacich for technical assistance, as well as the undergraduate summer students who worked on this project at the McLaughlin Research Institute: C. Schedl, M. Chen, S. Brauer, J. Anspach-Hanson and B. Cook. We also thank C. Ebeling for assistance with LI-COR analysis; S.S. Scherer for providing the PLP plasmid; N. Jenkins, N. Copeland, J. Chan and T. Watkins for protocols and advice; and E. Dzierzak for critical reading of the manuscript. This work was funded by the National Institute of Neurological Diseases and Stroke (NINDS) grant NS40751 and Muscular Dystrophy Association grant 3476 to J.R.B. Jr.; NINDS grants NS049087 and NS40745 to J.M.; and by grants from the Nederlandse Organisatie van Wetenschappelijk Onderzoek (NWO; ZonMW 903-42-195 and 901-01-205) to D.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John R Bermingham Jr or Dies Meijer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Results of the C57BL/6J-clp/+ X BALB/c backcross. (PDF 643 kb)

Supplementary Fig. 2

Fine mapping of the clp candidate region. (PDF 688 kb)

Supplementary Fig. 3

BAC transgene complementation of Lgi4clp. (PDF 791 kb)

Supplementary Fig. 4

Mechanism of Lgi4clp exon exclusion. (PDF 703 kb)

Supplementary Methods (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermingham, J., Shearin, H., Pennington, J. et al. The claw paw mutation reveals a role for Lgi4 in peripheral nerve development. Nat Neurosci 9, 76–84 (2006). https://doi.org/10.1038/nn1598

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1598

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing