Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural correlates of actual and predicted memory formation

Abstract

We aimed to discover the neural correlates of subjective judgments of learning—whereby participants judge whether current experiences will be subsequently remembered or forgotten—and to compare these correlates to the neural correlates of actual memory formation. During event-related functional magnetic resonance imaging, participants viewed 350 scenes and predicted whether they would remember each scene in a later recognition-memory test. Activations in the medial temporal lobe were associated with actual encoding success (greater activation for objectively remembered than forgotten scenes), but not with predicted encoding success (activations did not differ for scenes predicted to be remembered versus forgotten). Conversely, activations in the ventromedial prefrontal cortex were associated with predicted but not actual encoding success, and correlated with individual differences in the accuracy of judgments of learning. Activations in the lateral and dorsomedial prefrontal cortex were associated with both actual and predicted encoding success. These findings indicate specific dissociations and associations between the neural systems that mediate actual and predicted memory formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Task design.
Figure 2: Schematics of the four trial types and trial combinations for statistical analyses.
Figure 3: Statistical activation maps and percent signal change.
Figure 4: Ventromedial prefrontal cortex (VMPFC) and individual differences in JOL accuracy.

Similar content being viewed by others

References

  1. Brewer, J.B., Zhao, Z., Desmond, J.E., Glover, G.H. & Gabrieli, J.D. Making memories: brain activity that predicts how well visual experience will be remembered. Science 281, 1185–1187 (1998).

    Article  CAS  Google Scholar 

  2. Wagner, A.D. et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188–1191 (1998).

    Article  CAS  Google Scholar 

  3. King, J.F., Zechmeister, E.B. & Shaughnessy, J.J. Judgments of knowing: the influence of retrieval practice. Am. J. Psychol. 93, 329–343 (1980).

    Article  Google Scholar 

  4. Maki, R.H. & Berry, S.L. Metacomprehension of text material. J. Exp. Psychol. Learn. Mem. Cogn. 10, 663–679 (1984).

    Article  CAS  Google Scholar 

  5. Thiede, K.W., Anderson, M.C. & Therriault, D. Accuracy of metacognitive monitoring affects learning of texts. J. Educ. Psychol. 95, 66–73 (2003).

    Article  Google Scholar 

  6. Mazzoni, G. & Cornoldi, C. Strategies in study time allocation: why is study time sometimes not effective? J. Exp. Psychol. Gen. 122, 47–60 (1993).

    Article  Google Scholar 

  7. Dunlosky, J., Kubat-Silman, A.K. & Hertzog, C. Training monitoring skills improves older adults' self-paced associative learning. Psychol. Aging 18, 340–345 (2003).

    Article  Google Scholar 

  8. Dunlosky, J. et al. Inhalation of 30% nitrous oxide impairs people's learning without impairing people's judgments of what will be remembered. Exp. Clin. Psychopharmacol. 6, 77–86 (1998).

    Article  CAS  Google Scholar 

  9. Izaute, M. & Bacon, E. Specific effects of an amnesic drug: effect of lorazepam on study time allocation and on judgment of learning. Neuropsychopharmacology 30, 196–204 (2005).

    Article  CAS  Google Scholar 

  10. Vilkki, J., Surma-aho, O. & Servo, A. Inaccurate prediction of retrieval in a face matrix learning task after right frontal lobe lesions. Neuropsychology 13, 298–305 (1999).

    Article  CAS  Google Scholar 

  11. Kennedy, M.R. & Yorkston, K.M. Accuracy of metamemory after traumatic brain injury: predictions during verbal learning. J. Speech Lang. Hear. Res. 43, 1072–1086 (2000).

    Article  CAS  Google Scholar 

  12. Scoville, W.B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  Google Scholar 

  13. Corkin, S. What's new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3, 153–160 (2002).

    Article  CAS  Google Scholar 

  14. Kirchhoff, B.A., Wagner, A.D., Maril, A. & Stern, C.E. Prefrontal circuitry for episodic encoding and subsequent memory. J. Neurosci. 20, 6173–6180 (2000).

    Article  CAS  Google Scholar 

  15. Fletcher, P.C. & Henson, R.N. Frontal lobes and human memory: insights from functional neuroimaging. Brain 124, 849–881 (2001).

    Article  CAS  Google Scholar 

  16. Schnyer, D.M. et al. A role for right medial prefrontal cortex in accurate feeling-of-knowing judgments: evidence from patients with lesions to frontal cortex. Neuropsychologia 42, 957–966 (2004).

    Article  Google Scholar 

  17. Nelson, T.O. A comparison of current measures of the accuracy of feeling-of-knowing predictions. Psychol. Bull. 95, 109–133 (1984).

    Article  CAS  Google Scholar 

  18. Gusnard, D.A., Akbudak, E., Shulman, G.L. & Raichle, M.E. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 4259–4264 (2001).

    Article  CAS  Google Scholar 

  19. Stern, C.E. et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 8600–8665 (1996).

    Article  Google Scholar 

  20. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  Google Scholar 

  21. Eldridge, L.L., Knowlton, B.J., Furmanski, C.S., Bookheimer, S.Y. & Engel, S.A. Remembering episodes: a selective role for the hippocampus during retrieval. Nat. Neurosci. 3, 1149–1152 (2000).

    Article  CAS  Google Scholar 

  22. Cabeza, R., Rao, S.M., Wagner, A.D., Mayer, A.R. & Schacter, D.L. Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proc. Natl. Acad. Sci. USA 98, 4805–4810 (2001).

    Article  CAS  Google Scholar 

  23. Kikyo, H., Ohki, K. & Miyashita, Y. Neural correlates for feeling-of-knowing: an fMRI parametric analysis. Neuron 36, 177–186 (2002).

    Article  CAS  Google Scholar 

  24. Maril, A., Simons, J.S., Mitchell, J.P., Schwartz, B.L. & Schacter, D.L. Feeling-of-knowing in episodic memory: an event-related fMRI study. Neuroimage 18, 827–836 (2003).

    Article  Google Scholar 

  25. Wheeler, M.E. & Buckner, R.L. Functional dissociation among components of remembering: control, perceived oldness, and content. J. Neurosci. 23, 3869–3880 (2003).

    Article  CAS  Google Scholar 

  26. Frith, C.D. & Frith, U. Interacting minds–a biological basis. Science 286, 1692–1695 (1999).

    Article  CAS  Google Scholar 

  27. Kelley, W.M. et al. Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 14, 785–794 (2002).

    Article  CAS  Google Scholar 

  28. Schmitz, T.W., Kawahara-Baccus, T.N. & Johnson, S.C. Metacognitive evaluation, self-relevance, and the right prefrontal cortex. Neuroimage 22, 941–947 (2004).

    Article  Google Scholar 

  29. Daselaar, S.M., Prince, S.E. & Cabeza, R. When less means more: deactivations during encoding that predict subsequent memory. Neuroimage 23, 921–927 (2004).

    Article  CAS  Google Scholar 

  30. Damasio, H., Grabowski, T., Frank, R., Galaburday, A.M. & Damasio, A.R. The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science 264, 1102–1105 (1994).

    Article  CAS  Google Scholar 

  31. Tranel, D. Emotion, decision making, and the ventromedial prefrontal cortex. in Principles of Frontal Lobe Function (eds. Stuss, D.T. & Knight, R.T.) Ch. 22, 338–353 (Oxford University Press, London, 2002).

    Chapter  Google Scholar 

  32. Moscovitch, M. & Winocur, G. The frontal cortex and working with memory. in Principles of Frontal Lobe Function (eds. Stuss, D.T. & Knight, R.T.) Ch. 12, 188–209 (Oxford University Press, London, 2002).

    Chapter  Google Scholar 

  33. Nelson, T.O. & Narens, L. Metamemory: a theoretical framework and new findings. Psychol. Learn. Motiv. 26, 125–141 (1990).

    Article  Google Scholar 

  34. Koriat, A. Monitoring one's own knowledge during study: a cue-utilization approach to judgments of learning. J. Exp. Psychol. Gen. 126, 349–370 (1997).

    Article  Google Scholar 

  35. Hertzog, C., Dunlosky, J., Robinson, A.E. & Kidder, D.P. Encoding fluency is a cue used for judgments about learning. J. Exp. Psychol. Learn. Mem. Cogn. 29, 22–34 (2003).

    Article  Google Scholar 

  36. Benjamin, A.S., Bjork, R.A. & Schwartz, B.L. The mismeasure of memory: when retrieval fluency is misleading as a metamnemonic index. J. Exp. Psychol. Gen. 127, 55–68 (1998).

    Article  CAS  Google Scholar 

  37. Kelemen, W.L., Frost, P.J. & Weaver, C.A., III. Individual differences in metacognition: evidence against a general metacognitive ability. Mem. Cognit. 28, 92–107 (2000).

    Article  CAS  Google Scholar 

  38. Schnyer, D.M., Nicholls, L. & Verfaellie, M. The role of VMPC in metamemorial judgments of content retrievability. J. Cogn. Neurosci. 17, 832–846 (2005).

    Article  Google Scholar 

  39. Gomez-Beldarrain, M., Harries, C., Garcia-Monco, J.C., Ballus, E. & Grafman, J. Patients with right frontal lesions are unable to assess and use advice to make predictive judgments. J. Cogn. Neurosci. 16, 74–89 (2004).

    Article  Google Scholar 

  40. Petrides, M. Specialized systems for the processing of mnemonic information within the primate frontal cortex. Phil. Trans. R. Soc. Lond. B 351, 1455–1461 (1996).

    Article  CAS  Google Scholar 

  41. Chua, E.F., Rand-Giovannetti, E., Schacter, D.L., Albert, M.S. & Sperling, R.A. Dissociating confidence and accuracy: functional magnetic resonance imaging shows origins of the subjective memory experience. J. Cogn. Neurosci. 16, 1131–1142 (2004).

    Article  Google Scholar 

  42. Reber, P.J. et al. Neural correlates of successful encoding identified using functional magnetic resonance imaging. J. Neurosci. 22, 9541–9548 (2002).

    Article  CAS  Google Scholar 

  43. Schacter, D.L. & Worling, J.R. Attribute information and the feeling of knowing. Can. J. Psychol. 39, 467–475 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Gabrieli, P. Mazaika, J. Cooper, A.R. Preston and P. Sokol-Hessner for their assistance or comments. This research was sponsored by grants from the US National Institute of Mental Health to Y.-C.K. (MH073234) and J.D.E.G. (MH59940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Ching Kao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, YC., Davis, E. & Gabrieli, J. Neural correlates of actual and predicted memory formation. Nat Neurosci 8, 1776–1783 (2005). https://doi.org/10.1038/nn1595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing