Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Independence of luminance and contrast in natural scenes and in the early visual system

Abstract

The early visual system is endowed with adaptive mechanisms that rapidly adjust gain and integration time based on the local luminance (mean intensity) and contrast (standard deviation of intensity relative to the mean). Here we show that these mechanisms are matched to the statistics of the environment. First, we measured the joint distribution of luminance and contrast in patches selected from natural images and found that luminance and contrast were statistically independent of each other. This independence did not hold for artificial images with matched spectral characteristics. Second, we characterized the effects of the adaptive mechanisms in lateral geniculate nucleus (LGN), the direct recipient of retinal outputs. We found that luminance gain control had the same effect at all contrasts and that contrast gain control had the same effect at all mean luminances. Thus, the adaptive mechanisms for luminance and contrast operate independently, reflecting the very independence encountered in natural images.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Luminance and contrast in a natural scene.
Figure 2: Statistics of local luminance and contrast in natural images.
Figure 3: Effect and time course of gain control mechanisms in LGN.
Figure 4: Characterizing LGN responses at various luminances and contrasts.
Figure 5: The two models used to describe LGN responses, and a measure of their performance.
Figure 6: Independence of the effects of luminance gain control and contrast gain control.
Figure 7: Summary of the effects of luminance and contrast, and predictions of the separable model.

References

  1. 1

    Shapley, R.M. & Enroth-Cugell, C. Visual adaptation and retinal gain controls. in Progress in Retinal Research Vol. 3 (eds. Osborne, N. & Chader, G.) 263–346 (Pergamon, London, 1984).

    Google Scholar 

  2. 2

    Troy, J.B. & Enroth-Cugell, C. X and Y ganglion cells inform the cat's brain about contrast in the retinal image. Exp. Brain Res. 93, 383–390 (1993).

    CAS  Article  Google Scholar 

  3. 3

    Rodieck, R.W. The First Steps in Seeing (Sinauer, Sunderland, Massachussets, 1998).

    Google Scholar 

  4. 4

    Shapley, R.M. & Victor, J.D. The effect of contrast on the transfer properties of cat retinal ganglion cells. J. Physiol. (Lond.) 285, 275–298 (1978).

    CAS  Article  Google Scholar 

  5. 5

    Victor, J. The dynamics of the cat retinal X cell centre. J. Physiol. (Lond.) 386, 219–246 (1987).

    CAS  Article  Google Scholar 

  6. 6

    Baccus, S.A. & Meister, M. Fast and slow contrast adaptation in retinal circuitry. Neuron 36, 909–919 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Demb, J.B. Multiple mechanisms for contrast adaptation in the retina. Neuron 36, 781–783 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Kaplan, E., Purpura, K. & Shapley, R. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J. Physiol. (Lond.) 391, 267–288 (1987).

    CAS  Article  Google Scholar 

  9. 9

    Sclar, G., Maunsell, J.H. & Lennie, P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 30, 1–10 (1990).

    CAS  Article  Google Scholar 

  10. 10

    Bonin, V., Mante, V. & Carandini, M. The suppressive field of neurons in lateral geniculate. J. Neurosci. (in the press).

  11. 11

    Laughlin, S. A simple coding procedure enhances a neuron's information capacity. Z. Naturforsch. [C] 36, 910–912 (1981).

    CAS  Article  Google Scholar 

  12. 12

    Ruderman, D.L. The statistics of natural images. Network: Comput. Neural Syst. 5, 517–548 (1994).

    Article  Google Scholar 

  13. 13

    Tadmor, Y. & Tolhurst, D.J. Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes. Vision Res. 40, 3145–3157 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Van Hateren, J.H. Spatiotemporal contrast sensitivity of early vision. Vision Res. 33, 257–267 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Schwartz, O. & Simoncelli, E.P. Natural signal statistics and sensory gain control. Nat. Neurosci. 4, 819–825 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Shapley, R. The importance of contrast for the activity of single neurons, the VEP and perception. Vision Res. 26, 45–61 (1986).

    CAS  Article  Google Scholar 

  17. 17

    Shapley, R.M. & Man-Kit Lam, D. (eds.). Contrast Sensitivity (Bradford Books, 1993).

    Google Scholar 

  18. 18

    van Hateren, J.H. & van der Schaaf, A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Biol. Sci. 265, 359–366 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Najemnik, J. & Geisler, W.S. Optimal eye movement strategies in visual search. Nature 434, 387–391 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Oppenheim, A.V. & Lim, J.S. The importance of phase in signals. Proc. IEEE. 69, 529–541 (1981).

    Article  Google Scholar 

  21. 21

    Field, D.J. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4, 2379–2394 (1987).

    CAS  Article  Google Scholar 

  22. 22

    Saito, H. & Fukada, Y. Gain control mechanisms in X- and Y-type retinal ganglion cells of the cat. Vision Res. 26, 391–408 (1986).

    CAS  Article  Google Scholar 

  23. 23

    Lankheet, M.J., Van Wezel, R.J., Prickaerts, J.H. & van de Grind, W.A. The dynamics of light adaptation in cat horizontal cell responses. Vision Res. 33, 1153–1171 (1993).

    CAS  Article  Google Scholar 

  24. 24

    Yeh, T., Lee, B.B. & Kremers, J. The time course of adaptation in macaque retinal ganglion cells. Vision Res. 36, 913–931 (1996).

    CAS  Article  Google Scholar 

  25. 25

    Lee, B.B., Dacey, D.M., Smith, V.C. & Pokorny, J. Dynamics of sensitivity regulation in primate outer retina: the horizontal cell network. J. Vis. 3, 513–526 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Zaghloul, K.A., Boahen, K. & Demb, J.B. Contrast adaptation in subthreshold and spiking responses of mammalian Y-type retinal ganglion cells. J. Neurosci. 25, 860–868 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Sherman, S.M. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 24, 122–126 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Tranchina, D., Gordon, J. & Shapley, R.M. Retinal light adaptation - evidence for a feedback mechanism. Nature 310, 314–316 (1984).

    CAS  Article  Google Scholar 

  29. 29

    Smirnakis, S.M., Berry, M.J., Warland, D.K., Bialek, W. & Meister, M. Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69–73 (1997).

    CAS  Article  Google Scholar 

  30. 30

    Chander, D. & Chichilnisky, E.J. Adaptation to temporal contrast in primate and salamander retina. J. Neurosci. 21, 9904–9916 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Brown, S.P. & Masland, R.H. Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nat. Neurosci. 4, 44–51 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Solomon, S.G., Peirce, J.W., Dhruv, N.T. & Lennie, P. Profound contrast adaptation early in the visual pathway. Neuron 42, 155–162 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Reid, R.C., Victor, J.D. & Shapley, R.M. Broadband temporal stimuli decrease the integration time of neuron in cat striate cortex. Vis. Neurosci. 9, 39–45 (1992).

    CAS  Article  Google Scholar 

  34. 34

    Lankheet, M.J., van Wezel, R.J. & van de Grind, W.A. Light adaptation and frequency transfer properties of cat horizontal cells. Vision Res. 31, 1129–1142 (1991).

    CAS  Article  Google Scholar 

  35. 35

    Nolt, M.J., Kumbhani, R.D. & Palmer, L.A. Contrast-dependent spatial summation in the lateral geniculate nucleus and retina of the cat. J. Neurophysiol. 92, 1708–1717 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Derrington, A.M. & Lennie, P. The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat. J. Physiol. (Lond.) 333, 343–366 (1982).

    CAS  Article  Google Scholar 

  37. 37

    Troy, J.B., Bohnsack, D.L. & Diller, L.C. Spatial properties of the cat X-cell receptive field as a function of mean light level. Vis. Neurosci. 16, 1089–1104 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Lennie, P. Parallel visual pathways: a review. Vision Res. 20, 561–594 (1980).

    CAS  Article  Google Scholar 

  39. 39

    Freeman, T.C., Durand, S., Kiper, D.C. & Carandini, M. Suppression without inhibition in visual cortex. Neuron 35, 759–771 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Hochstein, S. & Shapley, R.M. Quantitative analysis of retinal ganglion cell classifications. J. Physiol. (Lond.) 262, 237–264 (1976).

    CAS  Article  Google Scholar 

  41. 41

    Sahani, M. & Linden, J.F. in Advances in Neural Information Processing Systems (eds. Becker, S., Thrun, S. & Obermayer, K.) 125–132 (MIT Press, Cambridge, Massachusetts, 2003).

    Google Scholar 

  42. 42

    Machens, C.K., Wehr, M.S. & Zador, A.M. Linearity of cortical receptive fields measured with natural sounds. J. Neurosci. 24, 1089–1100 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. Ringach for suggesting the singular value decomposition method and J. Victor for helpful comments. The study of natural images was performed in W.S.G.'s laboratory, supported by National Eye Institute grant R01EY11747. The study of physiological responses was performed in M.C.'s laboratory, supported by the James S. McDonnell Foundation 21st Century Research Award in Bridging Brain, Mind and Behavior.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matteo Carandini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Robustness of estimate of impulse response, and absence of slow contrast adaptation in cat LGN responses. (PDF 211 kb)

Supplementary Fig. 2

Measured responses and predictions of the descriptive model replotted as a function of linear frequency. (PDF 100 kb)

Supplementary Fig. 3

Independence of luminance and contrast gain control for two additional example cells. (PDF 102 kb)

Supplementary Methods (PDF 111 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mante, V., Frazor, R., Bonin, V. et al. Independence of luminance and contrast in natural scenes and in the early visual system. Nat Neurosci 8, 1690–1697 (2005). https://doi.org/10.1038/nn1556

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing