Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The transmembrane semaphorin Sema6A controls cerebellar granule cell migration

This article has been updated

Abstract

The transmembrane semaphorin protein Sema6A is broadly expressed in the developing nervous system. Sema6A repels several classes of developing axons in vitro and contributes to thalamocortical axon guidance in vivo. Here we show that during cerebellum development, Sema6A is selectively expressed by postmitotic granule cells during their tangential migration in the deep external granule cell layer, but not during their radial migration. In Sema6A-deficient mice, many granule cells remain ectopic in the molecular layer where they differentiate and are contacted by mossy fibers. The analysis of ectopic granule cell morphology in Sema6a−/− mice, and of granule cell migration and neurite outgrowth in cerebellar explants, suggests that Sema6A controls the initiation of granule cell radial migration, probably through a modulation of nuclear and/or soma translocation. Finally, the analysis of mouse chimeras suggests that this function of Sema6A is primarily non-cell-autonomous.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sema6A is expressed in tangentially migrating granule cells.
Figure 2: Abnormal granule cell migration in Sema6A-deficient mice.
Figure 3: Normal apoptosis, differentiation and radial glia organization in Sema6A knockouts.
Figure 4: Ectopic granule cells are contacted by mossy fibers in Sema6a−/−.
Figure 5: In vivo labeling of ectopic granule cells and parallel fibers in Sema6a−/−.
Figure 6: Abnormal in vitro migration of Sema6A-deficient granule cells.
Figure 7: Abnormal granule cell movement in absence of Sema6A.
Figure 8: Non-cell-autonomous function of Sema6A in migrating granule cells.

Similar content being viewed by others

Change history

  • 09 October 2005

    Replaced supplementary figures 1-4.

Notes

  1. In the version of the supplementary information originally attached to this article at the time of its publication online, the legends to supplementary figures were missing. This error has been corrected.

References

  1. Wingate, R.J. The rhombic lip and early cerebellar development. Curr. Opin. Neurobiol. 11, 82–88 (2001).

    Article  CAS  Google Scholar 

  2. Ryder, E.F. & Cepko, C.L. Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron 12, 1011–1028 (1994).

    Article  CAS  Google Scholar 

  3. Komuro, H., Yacubova, E. & Rakic, P. Mode and tempo of tangential cell migration in the cerebellar external granular layer. J. Neurosci. 21, 527–540 (2001).

    Article  CAS  Google Scholar 

  4. Ramon y Cajal, S. Histologie du système nerveux de l'homme et des vertébrés (Maloine, Paris, 1911).

    Google Scholar 

  5. Yacubova, E. & Komuro, H. Cellular and molecular mechanisms of cerebellar granule cell migration. Cell Biochem. Biophys. 37, 213–234 (2003).

    Article  Google Scholar 

  6. Fiore, R. & Puschel, A.W. The function of semaphorins during nervous system development. Front. Biosci. 8, s484–s499 (2003).

    Article  CAS  Google Scholar 

  7. Qu, X. et al. Identification, characterization, and functional study of the two novel human members of the semaphorin gene family. J. Biol. Chem. 277, 35574–35585 (2002).

    Article  CAS  Google Scholar 

  8. Kikuchi, K. et al. Cloning and characterization of a novel class VI semaphorin, semaphorin Y. Mol. Cell. Neurosci. 13, 9–23 (1999).

    Article  CAS  Google Scholar 

  9. Suto, F. et al. Plexin-a4 mediates axon-repulsive activities of both secreted and transmembrane semaphorins and plays roles in nerve fiber guidance. J. Neurosci. 25, 3628–3637 (2005).

    Article  CAS  Google Scholar 

  10. Toyofuku, T. et al. Guidance of myocardial patterning in cardiac development by Sema6D reverse signalling. Nat. Cell. Biol. (2004).

  11. Winberg, M.L. et al. Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell 95, 903–916 (1998).

    Article  CAS  Google Scholar 

  12. Godenschwege, T.A., Hu, H., Shan-Crofts, X., Goodman, C.S. & Murphey, R.K. Bi-directional signaling by Semaphorin 1a during central synapse formation in Drosophila. Nat. Neurosci. 5, 1294–1301 (2002).

    Article  CAS  Google Scholar 

  13. Leighton, P.A. et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174–179 (2001).

    Article  CAS  Google Scholar 

  14. Mitchell, K.J. et al. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat. Genet. 28, 241–249 (2001).

    Article  CAS  Google Scholar 

  15. Zhou, L. et al. Cloning and expression of a novel murine semaphorin with structural similarity to insect semaphorin I. Mol. Cell. Neurosci. 9, 26–41 (1997).

    Article  CAS  Google Scholar 

  16. Rabacchi, S.A. et al. Collapsin-1/semaphorin-III/D is regulated developmentally in Purkinje cells and collapses pontocerebellar mossy fiber neuronal growth cones. J. Neurosci. 19, 4437–4448 (1999).

    Article  CAS  Google Scholar 

  17. Fujita, S., Shimada, M. & Nakamura, T. H3-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and the internal granular layers of the mouse cerebellum. J. Comp. Neurol. 128, 191–208 (1966).

    Article  CAS  Google Scholar 

  18. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).

    Article  CAS  Google Scholar 

  19. Sakagami, H., Umemiya, M., Kobayashi, T., Saito, S. & Kondo, H. Immunological evidence that the beta isoform of Ca2+/calmodulin-dependent protein kinase IV is a cerebellar granule cell-specific product of the CaM kinase IV gene. Eur. J. Neurosci. 11, 2531–2536 (1999).

    Article  CAS  Google Scholar 

  20. Ahn, A.H., Dziennis, S., Hawkes, R. & Herrup, K. The cloning of zebrin II reveals its identity with aldolase C. Development 120, 2081–2090 (1994).

    CAS  PubMed  Google Scholar 

  21. Li, S., Qiu, F., Xu, A., Price, S.M. & Xiang, M. Barhl1 regulates migration and survival of cerebellar granule cells by controlling expression of the neurotrophin-3 gene. J. Neurosci. 24, 3104–3114 (2004).

    Article  CAS  Google Scholar 

  22. Wood, K.A., Dipasquale, B. & Youle, R.J. In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron 11, 621–632 (1993).

    Article  CAS  Google Scholar 

  23. Matsunaga, E. et al. RGM and its receptor neogenin regulate neuronal survival. Nat. Cell. Biol. 6, 749–755 (2004).

    Article  CAS  Google Scholar 

  24. Kyriakopoulou, K., de Diego, I., Wassef, M. & Karagogeos, D. A combination of chain and neurophilic migration involving the adhesion molecule TAG-1 in the caudal medulla. Development 129, 287–296 (2002).

    CAS  PubMed  Google Scholar 

  25. Lindner, J., Rathjen, F.G. & Schachner, M. L1 mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. Nature 305, 427–430 (1983).

    Article  CAS  Google Scholar 

  26. Gleeson, J.G., Lin, P.T., Flanagan, L.A. & Walsh, C.A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257–271 (1999).

    Article  CAS  Google Scholar 

  27. Chan-Palay, V. Arrested granule cells and their synapses with mossy fibers in the molecular layer of the cerebellar cortex. Z. Anat. Entwicklungsgesch. 139, 11–20 (1972).

    CAS  PubMed  Google Scholar 

  28. Hioki, H. et al. Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117, 1–6 (2003).

    Article  CAS  Google Scholar 

  29. Soha, J.M., Kim, S., Crandall, J.E. & Vogel, M.W. Rapid growth of parallel fibers in the cerebella of normal and staggerer mutant mice. J. Comp. Neurol. 389, 642–654 (1997).

    Article  CAS  Google Scholar 

  30. Nagata, I. & Nakatsuji, N. Granule cell behavior on laminin in cerebellar microexplant cultures. Brain Res. Dev. Brain Res. 52, 63–73 (1990).

    Article  CAS  Google Scholar 

  31. Bellion, A., Baudoin, J.P., Alvarez, C., Bornens, M. & Metin, C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J. Neurosci. 25, 5691–5699 (2005).

    Article  CAS  Google Scholar 

  32. Solecki, D.J., Model, L., Gaetz, J., Kapoor, T.M. & Hatten, M.E. Par6alpha signaling controls glial-guided neuronal migration. Nat. Neurosci. 7, 1195–1203 (2004).

    Article  CAS  Google Scholar 

  33. Hadjantonakis, A.K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76, 79–90 (1998).

    Article  CAS  Google Scholar 

  34. Yacubova, E. & Komuro, H. Intrinsic program for migration of cerebellar granule cells in vitro. J. Neurosci. 22, 5966–5981 (2002).

    Article  CAS  Google Scholar 

  35. Jensen, P., Smeyne, R. & Goldowitz, D. Analysis of cerebellar development in math1 null embryos and chimeras. J. Neurosci. 24, 2202–2211 (2004).

    Article  CAS  Google Scholar 

  36. Wechsler-Reya, R.J. & Scott, M.P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999).

    Article  CAS  Google Scholar 

  37. Lu, Q., Sun, E.E., Klein, R.S. & Flanagan, J.G. Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105, 69–79 (2001).

    Article  CAS  Google Scholar 

  38. Tomoda, T., Kim, J.H., Zhan, C. & Hatten, M.E. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev. 18, 541–558 (2004).

    Article  CAS  Google Scholar 

  39. Komuro, H. & Rakic, P. Modulation of neuronal migration by NMDA receptors. Science 260, 95–97 (1993).

    Article  CAS  Google Scholar 

  40. Rio, C., Rieff, H.I., Qi, P., Khurana, T.S. & Corfas, G. Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19, 39–50 (1997).

    Article  CAS  Google Scholar 

  41. Borghesani, P.R. et al. BDNF stimulates migration of cerebellar granule cells. Development 129, 1435–1442 (2002).

    CAS  Google Scholar 

  42. Yu, H.H., Huang, A.S. & Kolodkin, A.L. Semaphorin-1a acts in concert with the cell adhesion molecules fasciclin II and connectin to regulate axon fasciculation in Drosophila. Genetics 156, 723–731 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gomes, E.R., Jani, S. & Gundersen, G.G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).

    Article  CAS  Google Scholar 

  44. Arsenio Nunes, M.L. & Sotelo, C. Development of the spinocerebellar system in the postnatal rat. J. Comp. Neurol. 237, 291–306 (1985).

    Article  CAS  Google Scholar 

  45. Sievers, J., Mangold, U. & Berry, M. 6-OHDA-induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. III. Morphology and synaptic organization of ectopic cerebellar neurons: a scanning and transmission electron microscopic study. J. Comp. Neurol. 232, 319–330 (1985).

    Article  CAS  Google Scholar 

  46. Berciano, M.T. & Lafarga, M. Colony-forming ectopic granule cells in the cerebellar primary fissure of normal adult rats: a morphologic and morphometric study. Brain Res. 439, 169–178 (1988).

    Article  CAS  Google Scholar 

  47. Marillat, V. et al. Spatiotemporal expression patterns of slit and robo genes in the rat brain. J. Comp. Neurol. 442, 130–155 (2002).

    Article  Google Scholar 

  48. Louvi, A., Alexandre, P., Metin, C., Wurst, W. & Wassef, M. The isthmic neuroepithelium is essential for cerebellar midline fusion. Development 130, 5319–5330 (2003).

    Article  CAS  Google Scholar 

  49. Hogan, B., Beddington, R.S., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1994).

    Google Scholar 

  50. Hatten, M.E. Neuronal regulation of astroglial morphology and proliferation in vitro. J. Cell Biol. 100, 384–396 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Sotelo for his constant support and comments on the manuscript; H. Sakagami and H. Kondo (Tohoku University) for anti-β isoform of CaMKIV antibody; R. Hawkes (University of Calgary, Canada) for Zebrin II Q113 antibody; D. Karagogeos (University of Crete, Greece) for TAG-1 antibody; F. Qiu (UMDNJ, Piscataway, USA) for Barhl1 cDNA; M. Wassef (ENS, Paris, France) for Math1 cDNA; K. Skurka and D. Rottkamp for help in localizing the insertion site in the Sema6a gene trap allele; R. Schwartzmann and V. Georget (Service d'Imagerie IFR83, Université Paris 6, France) for their help with confocal and videomicroscopy studies; and M. Wassef, C. Lebrand, C. Métin and J.P. Baudoin for discussions. A.C. is supported by the Fondation pour la Recherche sur le Cerveau (FRC), the Schlumberger Foundation and the Association pour la Recherche sur le Cancer (ARC). K.J.M is a Science Foundation Ireland (SFI) Investigator. This work was supported by SFI grant 01/F.1/B006 to K.J.M; and grants from the 21st Century COE Program, and from the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST) to H.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Chédotal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

BrdU pulse labelling. (PDF 2325 kb)

Supplementary Fig. 2

Distribution of granule cell precursors. (PDF 3019 kb)

Supplementary Fig. 3

Granule cell neurite outgrowth. (PDF 698 kb)

Supplementary Fig. 4

Model of Sema6A function. (PDF 395 kb)

Supplementary Video 1

Time-lapse video 1 of migrating wild-type neurons. Migration of wild-type granule cells from an EGL microexplant after 24 h in culture. The explant is on the left of the frame. Granule cells migrate away from the explant. They also extend long processes bearing dynamic growth cones. (MOV 1962 kb)

Supplementary Video 2

Time-lapse video 2 of migrating wild-type neurons. Wild-type EGL microexplant cultured for 24 h. The explant is on the top. The movement of the soma/nucleus is saltatory and preceded by the appearance of an elongated swelling just ahead of the nucleus. (MOV 1018 kb)

Supplementary Video 3

Time-lapse video 3 of migrating Sema6A−/− neurons. Sema6A−/− EGL microexplant after 24 h in culture. The explant is on the left of the frame. Many granule cells remains stationary, oscillating, and some move backward towards the explant. However the cells extend long neurites as active as wild-type ones. (MOV 1251 kb)

Supplementary Video 4

Time-lapse video 4 of migrating Sema6A−/− neurons. The explant is located on the left of the frame. The cell body of most Sema6A−/− granule cells does not move forward and one in the center of the frame move back toward the explant. (MOV 1303 kb)

Supplementary Video 5

Time-lapse video 5 of migrating Sema6A−/− neurons. The explant is on the left of the frame. Illustration of two migrating Sema6A−/− granule cells. One in the bottom moves rearward toward the explant, while the second one migrate in the correct direction. (MOV 754 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerjan, G., Dolan, J., Haumaitre, C. et al. The transmembrane semaphorin Sema6A controls cerebellar granule cell migration. Nat Neurosci 8, 1516–1524 (2005). https://doi.org/10.1038/nn1555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing