Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cortical responses to invisible objects in the human dorsal and ventral pathways


The primate visual system is believed to comprise two main pathways: a ventral pathway for conscious perception and a dorsal pathway that can process visual information and guide action without accompanying conscious knowledge. Evidence for this theory has come primarily from studies of neurological patients and animals. Using fMRI, we show here that even though observers are completely unaware of test object images owing to interocular suppression, their dorsal cortical areas demonstrate substantial activity for different types of visual objects, with stronger responses to images of tools than of human faces. This result also suggests that in binocular rivalry, substantial information in the suppressed eye can escape the interocular suppression and reach dorsal cortex.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimuli and procedure used in experiment 1.
Figure 2: Object-sensitive areas depicted on an inflated brain of a single subject.
Figure 3: Results from the first experiment showing time courses and the average BOLD signals (percentage change) from dorsal and ventral object sensitive areas in 'visible' (gray curves and bars) and 'invisible' (black curves and bars) conditions.
Figure 4: Results from the second experiment using images of tools and faces.


  1. Ungerleider, L.G. & Mishkin, M. Two cortical visual systems. in Analysis of Visual Behavior (eds. Ingle, D.J., Goodale, M.A. & Mansfield, R.J.W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  2. Milner, A.D. & Goodale, M.A. The Visual Brain in Action (Oxford University Press, Oxford, 1995).

    Google Scholar 

  3. James, T.W., Culham, J., Humphrey, G.K., Milner, A.D. & Goodale, M.A. Ventral occipital lesions impair object recognition but not object directed grasping: an fMRI study. Brain 126, 2463–2475 (2003).

    Article  PubMed  Google Scholar 

  4. Goodale, M.A., Milner, A.D., Jakobson, L.S. & Carey, D.P. A neurological dissociation between perceiving objects and grasping them. Nature 349, 154–156 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Kluver, H. & Bucy, P.C. An analysis of certain effects of bilateral temporal lobectomy in the rhesus monkey, with special reference to 'psychic blindness'. J. Psychol. 5, 33–54 (1938).

    Article  Google Scholar 

  6. Goodale, M.A. & Westwood, D.A. An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr. Opin. Neurobiol. 14, 203–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Grill-Spector, K., Kourtzi, Z. & Kanwisher, N. The lateral occipital complex and its role in object recogntion. Vision Res. 41, 1409–1422 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Grill-Spector, K., Kushnir, T., Edelman, S., Itzchak, Y. & Malach, R. Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21, 191–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Dale, A.M. et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Grill-Spector, K., Kushnir, T., Hendler, T. & Malach, R. The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci. 3, 837–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. James, T.W., Humphrey, G.K., Gati, J.S., Menon, R.S. & Goodale, M.A. The effects of visual object priming on brain activation before and after recognition. Curr. Biol. 10, 1017–1024 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. James, T.W., Humphrey, G.K., Gati, J.S., Menon, R.S. & Goodale, M.A. Differential effects of viewpoint on object-driven activation in dorsal and ventral streams. Neuron 35, 793–801 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Murray, S.O., Olshausen, B.A. & Woods, D.L. Processing shape, motion and three-dimensional shape-from-motion in the human cortex. Cereb. Cortex 13, 508–516 (2003).

    Article  PubMed  Google Scholar 

  14. Chao, L.L. & Martin, A. Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12, 478–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Tong, F., Nakayama, K., Vaughan, J.T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Bar, M. et al. Cortical mechanisms specific to explicit visual object recognition. Neuron 29, 529–535 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Sheinberg, D.L. & Logothetis, N.K. The role of temporal cortical areas in perceptual organization. Proc. Natl. Acad. Sci. USA 94, 3408–3413 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Breese, B.B. Binocular rivalry. Psychol. Rev. 16, 410–415 (1909).

    Article  Google Scholar 

  19. Blake, R. Primer on binocular rivalry, including controversial issues. Brain Mind 2, 5–38 (2001).

    Article  Google Scholar 

  20. Williams, M.A., Morris, A.P., McGlone, F., Abbott, D.F. & Mattingley, J.B. Amygdala responses to fearful and happy facial expressions under conditions of binocular suppression. J. Neurosci. 24, 2898–2904 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pasley, B.N., Mayes, L.C. & Schultz, R.T. Subcortical discrimination of unperceived objects during binocular rivalry. Neuron 42, 163–172 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Kanwisher, N., Downing, P., Epstein, R. & Kourtzi, Z. Functional neuroimaging of human visual recognition. in The Handbook of Functional Neuroimaging of Cognition (eds. Cabeza, R. & Kingstone, A.) 109–152 (MIT Press, Cambridge, Massachusetts, 2001).

    Google Scholar 

  23. Claeys, K.G., Lindsey, D.T., De Schutter, E. & Orban, G.A. A higher order motion region in human inferior parietal lobule: evidence from fMRI. Neuron 40, 631–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, S.H., Blake, R. & Heeger, D.J. Traveling waves of activity in primary visual cortex during binocular rivalry. Nat. Neurosci. 8, 22–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, S.H. & Blake, R. V1 activity is reduced during binocular rivalry. J. Vis. 2, 618–26 (2002).

    Article  PubMed  Google Scholar 

  26. Polonsky, A., Blake, R., Braun, J. & Heeger, D.J. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat. Neurosci. 3, 1153–1159 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Weiskrantz, L. Consciousness Lost and Found (Oxford University Press, Oxford, 1997).

    Google Scholar 

  28. Sincich, L.C., Park, K.F., Wohlgenuth, M.J. & Horton, J.C. Bypassing V1: a direct geniculate input to area MT. Nat. Neurosci. 7, 1123–1128 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. He, S., Carlson, T.A. & Chen, X. Parallel pathways and temporal dynamics in binocular rivalry. in Binocular Rivalry and Perceptual Ambiguity (eds. Alais, D. & Blake, R.) (MIT Press, Cambridge, Massachusetts, 2005).

    Google Scholar 

  30. Livingstone, M.S. & Hubel, D.H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7, 3416–3468 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Logothetis, N.K. & Schall, J.D. Neuronal correlates of subjective visual perception. Science 245, 761–763 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Sereno, M.I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Engel, S.A., Glover, G.H. & Wandell, B.A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

Download references


We thank S. Murray, S. Cheung and Y. Jiang for their technical assistance and P. Costello for help with the manuscript. This research was supported by the James S. McDonnell foundation, the US National Institutes of Health and the University of Minnesota's Eva O. Miller Fellowship and Graduate Research Partnership Program Award.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sheng He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

BOLD signal from ROIs in experiment 1. (PDF 179 kb)

Supplementary Fig. 2

BOLD signal from ROIs in experiment 2. (PDF 674 kb)

Supplementary Table 1

Talairach coordinates of ROIs. (PDF 45 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fang, F., He, S. Cortical responses to invisible objects in the human dorsal and ventral pathways. Nat Neurosci 8, 1380–1385 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing