Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model

Abstract

In Alzheimer disease, increased β-secretase (BACE1) activity has been associated with neurodegeneration and accumulation of amyloid precursor protein (APP) products. Thus, inactivation of BACE1 could be important in the treatment of Alzheimer disease. In this study, we found that lowering BACE1 levels using lentiviral vectors expressing siRNAs targeting BACE1 reduced amyloid production and the neurodegenerative and behavioral deficits in APP transgenic mice, a model of Alzheimer disease. Our results suggest that lentiviral vector delivery of BACE1 siRNA can specifically reduce the cleavage of APP and neurodegeneration in vivo and indicate that this approach could have potential therapeutic value for treatment of Alzheimer disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construct design and in vitro testing of lenti-siRNA constructs.
Figure 2: Characterization of the effects of lenti-siBACE1-6 expression in the brains of APP transgenic mice.
Figure 3: Immunolabeling patterns of BACE1 expression and the lenti-siRNA distribution.
Figure 4: Effects of the lenti-siBACE1-6 treatment on APP processing and amyloid deposition.
Figure 5: Effects of lenti-siBACE1-6 on neuronal integrity.
Figure 6: Behavioral analysis of transgenic mice treated with lenti-siBACE1-6 in the Morris water maze.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Sinha, S. et al. Recent advances in the understanding of the processing of APP to beta amyloid peptide. Ann. NY Acad. Sci. 920, 206–208 (2000).

    Article  CAS  Google Scholar 

  2. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    Article  CAS  Google Scholar 

  3. Selkoe, D.J. & Schenk, D. Alzheimer's disease: Molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol. 43, 545–584 (2003).

    Article  CAS  Google Scholar 

  4. Citron, M. Emerging Alzheimer's disease therapies: inhibition of β-secretase. Neurobiol. Aging 23, 1017–1022 (2002).

    Article  CAS  Google Scholar 

  5. Sinha, S. et al. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402, 537–540 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Esler, W.P. & Wolfe, M.S. A portrait of Alzheimer secretases–new features and familiar faces. Science 293, 1449–1454 (2001).

    Article  CAS  Google Scholar 

  7. Selkoe, D. et al. Beta-amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissue. Proc. Natl. Acad. Sci. USA 85, 7341–7345 (1988).

    Article  CAS  Google Scholar 

  8. Selkoe, D.J. et al. The role of APP processing and trafficking pathways in the formation of amyloid beta-protein. Ann. NY Acad. Sci. 777, 57–64 (1996).

    Article  CAS  Google Scholar 

  9. Dingwall, C. Spotlight on BACE: the secretases as targets for treatment in Alzheimer disease. J. Clin. Invest. 108, 1243–1246 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Shen, J. et al. Skeletal and CNS deficits in Presenilin-1–deficient mice. Cell 89, 629–639 (1997).

    Article  CAS  Google Scholar 

  11. Roberds, S.L. et al. BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer's disease therapeutics. Hum. Mol. Genet. 10, 1317–1324 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Ohno, M. et al. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of alzheimer's disease. Neuron 41, 27–33 (2004).

    Article  CAS  Google Scholar 

  13. Li, R. et al. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients. Proc. Natl. Acad. Sci. USA 101, 3632–3637 (2004).

    Article  CAS  Google Scholar 

  14. Holsinger, R.M., McLean, C.A., Beyreuther, K., Masters, C.L. & Evin, G. Increased expression of the amyloid precursor beta-secretase in Alzheimer's disease. Ann. Neurol. 51, 783–786 (2002).

    Article  CAS  Google Scholar 

  15. Fukumoto, H., Cheung, B.S., Hyman, B.T. & Irizarry, M.C. Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch. Neurol. 59, 1381–1389 (2002).

    Article  Google Scholar 

  16. Vassar, R. The beta-secretase, BACE: a prime drug target for Alzheimer's disease. J. Mol. Neurosci. 17, 157–170 (2001).

    Article  CAS  Google Scholar 

  17. Hong, L. et al. Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science 290, 150–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Miller, V.M., Gouvion, C.M., Davidson, B.L. & Paulson, H.L. Targeting Alzheimer's disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res. 32, 661–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Tiscornia, G., Singer, O., Ikawa, M. & Verma, I.M. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100, 1844–1848 (2003).

    Article  CAS  Google Scholar 

  20. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

  21. Tuszynski, M.H. Gene therapy for neurological disease. Expert Opin. Biol. Ther. 3, 815–828 (2003).

    Article  CAS  Google Scholar 

  22. Marr, R.A. et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci. 23, 1992–1996 (2003).

    Article  CAS  Google Scholar 

  23. Davidson, B.L. & Paulson, H.L. Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol. 3, 145–149 (2004).

    Article  CAS  Google Scholar 

  24. Kao, S.C., Krichevsky, A.M., Kosik, K.S. & Tsai, L.H. BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem. 279, 1942–1949 (2004).

    Article  CAS  Google Scholar 

  25. Takahashi, R.H. et al. Oligomerization of Alzheimer's beta-amyloid within processes and synapses of cultured neurons and brain. J. Neurosci. 24, 3592–3599 (2004).

    Article  CAS  Google Scholar 

  26. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    Article  CAS  Google Scholar 

  27. Lacor, P.N. et al. Synaptic targeting by Alzheimer's-related amyloid beta oligomers. J. Neurosci. 24, 10191–10200 (2004).

    Article  CAS  Google Scholar 

  28. Walsh, D.M. et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, H.S. et al. Carboxyl-terminal fragment of Alzheimer's APP destabilizes calcium homeostasis and renders neuronal cells vulnerable to excitotoxicity. FASEB J. 14, 1508–1517 (2000).

    CAS  Google Scholar 

  30. Song, D.K. et al. Behavioral and neuropathologic changes induced by central injection of carboxyl-terminal fragment of beta-amyloid precursor protein in mice. J. Neurochem. 71, 875–878 (1998).

    Article  CAS  Google Scholar 

  31. Oster-Granite, M., McPhie, D., Greenan, J. & Neve, R. Age-dependent neuronal and synaptic degradation in mice transgenic for the C terminus of the amyloid procursor protein. J. Neurosci. 16, 6732–6741 (1996).

    Article  CAS  Google Scholar 

  32. Berger-Sweeney, J. et al. Impairments in learning and memory accompanied by neurodegeneration in mice transgenic for the carboxyl-terminus of the amyloid precursor protein. Brain Res. Mol. Brain Res. 66, 150–162 (1999).

    Article  CAS  Google Scholar 

  33. Kim, H.S., Park, C.H. & Suh, Y.H. C-terminal fragment of amyloid precursor protein inhibits calcium uptake into rat brain microsomes by Mg2+-Ca2+ ATPase. Neuroreport 9, 3875–3879 (1998).

    Article  CAS  Google Scholar 

  34. Xia, H. et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 10, 816–820 (2004).

    Article  CAS  Google Scholar 

  35. Huse, J.T. et al. Beta-secretase processing in the trans-Golgi network preferentially generates truncated amyloid species that accumulate in Alzheimer's disease brain. J. Biol. Chem. 277, 16278–16284 (2002).

    Article  CAS  Google Scholar 

  36. Rossner, S., Apelt, J., Schliebs, R., Perez-Polo, J.R. & Bigl, V. Neuronal and glial beta-secretase (BACE) protein expression in transgenic Tg2576 mice with amyloid plaque pathology. J. Neurosci. Res. 64, 437–446 (2001).

    Article  CAS  Google Scholar 

  37. Kitazume, S. et al. Alzheimer's beta-secretase, beta-site amyloid precursor protein-cleaving enzyme, is responsible for cleavage secretion of a Golgi-resident sialyltransferase. Proc. Natl. Acad. Sci. USA 98, 13554–13559 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Kitazume, S. et al. In vivo cleavage of alpha2,6-sialyltransferase by Alzheimer beta-secretase. J. Biol. Chem. 280, 8589–8595 (2005).

    Article  CAS  Google Scholar 

  39. Wong, H.K. et al. Beta subunits of voltage-gated sodium channels are novel substrates of BACE1 and gamma-secretase. J. Biol. Chem. 280, 23009–23017 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Chang, W.P. et al. In vivo inhibition of Abeta production by memapsin 2 (beta-secretase) inhibitors. J. Neurochem. 89, 1409–1416 (2004).

    Article  CAS  Google Scholar 

  41. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  42. Naldini, L., Blomer, U., Gage, F.H., Trono, D. & Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11382–11388 (1996).

    Article  CAS  Google Scholar 

  43. Pfeifer, A., Kessler, T., Silletti, S., Cheresh, D.A. & Verma, I.M. Suppression of angiogenesis by lentiviral delivery of PEX, a noncatalytic fragment of matrix metalloproteinase 2. Proc. Natl. Acad. Sci. USA 97, 12227–12232 (2000).

    Article  CAS  Google Scholar 

  44. Mucke, L. et al. High-level neuronal expression of Aβ 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058 (2000).

    Article  CAS  Google Scholar 

  45. Masliah, E. et al. Aβ1–42 promotes cholinergic sprouting in patients with Alzheimer disease and Lewy body variant of Alzheimer disease. Neurology 61, 206–211 (2003).

    Article  CAS  Google Scholar 

  46. Masliah, E. et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: Implications for neurodegenerative disorders. Science 287, 1265–1269 (2000).

    Article  CAS  Google Scholar 

  47. Rockenstein, E. et al. High beta-secretase activity elicits neurodegeneration in transgenic mice despite reductions in amyloid-beta levels: implications for the treatment of Alzheimer's disease. J. Biol. Chem., published online 15 July 2005 (10.1074/jbc.M507016200).

  48. Rockenstein, E., Mallory, M., Mante, M., Sisk, A. & Masliah, E. Early formation of mature amyloid-b proteins deposits in a mutant APP transgenic model depends on levels of Ab1–42. J. Neurosci. Res. 66, 573–582 (2001).

    Article  CAS  Google Scholar 

  49. Rockenstein, E. et al. The neuroprotective effects of Cerebrolysin in a transgenic model of Alzheimer's disease are associated with improved behavioral performance. J. Neural Transm. 110, 1313–1327 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants AG5131, AG10435, AG18440 and AG08514 to F.H.G. R.A.M. was supported in part by fund from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Inder M Verma or Eliezer Masliah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, O., Marr, R., Rockenstein, E. et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 8, 1343–1349 (2005). https://doi.org/10.1038/nn1531

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1531

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing